Prof: IDRISSI Abdessamad

Les Fonctions Exponentielles (série n°1)

2^{ème} Année Bac Sc Exp

🗷 Exercice 1:

😊 1^{ère} partie :

Soit g la fonction définie sur \mathbb{R} par : $g(x) = (2-x)e^{-x} + 1$

- ① a Calculer g'(x) pour tout $x \in \mathbb{R}$.
 - b Etudier les variations de la fonction q.
- ②- En déduire que : g(x) > 0 pour tout $x \in \mathbb{R}$.

😊 2^{ème} partie :

Soit f la fonction définie par : $f(x) = (x-1)e^{-x} + x$.

- ① Calculer : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- ② Etudier les variations de f.
- \mathfrak{J} a Etudier les branches infinies de courbe $\left(\mathscr{C}_{f}\right)$

b - Etudier les positions relatives de la courbe $\left(\mathscr{C}_f\right)$ et la droite $\left(\Delta\right)$ d'équation y=x .

igglediggledigglediggledigglegiggledigglegigg

Exercice 2:

① 1^{ère} partie :

Soit g la fonction définie sur \mathbb{R} par : $g(x) = e^x - 2x + 2$

- ① Calculer g'(x) pour tout $x \in \mathbb{R}$.
- ② a Etudier le signe de g'(x) pour tout $x \in \mathbb{R}$ et en déduire les variations de la fonction g (le calcul des limites n'est pas demandé).

b - En déduire que $g(x) \succ 0$ pour tout $x \in \mathbb{R}$.

2ème partie :

Soit f la fonction définie par : $f(x) = xe^{-x} + \frac{x}{2} + 1$.

① - a - Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$ et interpréter le résultat graphiquement.

b - Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \left[f(x) - \left(\frac{1}{2} x + 1 \right) \right]$ et interpréter le résultat graphiquement.

c - Etudier les positions relatives de la courbe $\left(\mathscr{C}_f\right)$ et la droite $\left(\Delta\right)$ d'équation : $y=\frac{1}{2}x+1$.

② - a - Montrer que : $f'(x) = \frac{g(x)}{2e^x}$ pour tout $x \in \mathbb{R}$.

b - Dresser le tableau de variations de f .

3 - a - Montrer que l'équation f(x) = 0 admet une solution unique α dans]-1;0[

b - Déterminer l'équation de la tangente (T) à la courbe $\left(\mathscr{C}_{\scriptscriptstyle f}\right)$ au point d'abscisse 0.

- **5** Tracer $\left(\mathscr{C}_f\right)$ dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$. (On prends $e\approx 2.7$ et $\frac{2}{e^2}\approx 0.27$).

🖎 Exercice 3 :

② 1^{ère} partie :

Soit g la fonction définie sur \mathbb{R} par : $g(x) = e^x - x$

- 1 Etudier les variations de la fonction g.
- 2- En déduire le signe de g(x) sur \mathbb{R} .

😊 2^{ème} partie :

Soit f la fonction définie par : $f(x) = \frac{xe^x - 1}{e^x - 1}$.

- \bigcirc a Déterminer D_f l'ensemble de définition de la fonction f .
 - b Trouver les limites de f aux bornes des intervalles de l'ensemble de définition $D_{\scriptscriptstyle f}$
- ② a Calculer $\lim_{x \to +\infty} [f(x) x]$ et interpréter le résultat graphiquement.
 - b Etudier le signe de f(x)-x sur \mathbb{R}_+^* .
 - c En déduire la position relative de la courbe $\left(\mathscr{C}_f\right)$ et la droite $\left(\Delta\right)$ d'équation y=x
- $\cent{3}$ Calculer f'(x) pour tout $x \in \mathbb{R}^*$, puis dresser le tableau de variations de f .

🖎 Exercice 4:

© 1 error partie: Soit f la fonction définie sur \mathbb{R} par : $f(x) = 1 - \frac{x}{2} - \frac{2}{e^x + 1}$.

- ① a Vérifier que : $1 \frac{1}{e^x + 1} = \frac{1}{e^{-x} + 1}$.
 - b Etudier la parité de f et interpréter les résultats graphiquement.
- ② Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \left[f(x) \left(1 \frac{x}{2}\right) \right]$ et interpréter le résultat graphiquement.
- 3 a Calculer f'(x) pour tout $x \in \mathbb{R}$, puis étudier les variations de f sur \mathbb{R}^+ .
 - b En déduire que : $(\forall x \in \mathbb{R}^+)$: $1 \frac{1}{e^x + 1} \le \frac{x}{2}$.
- igathermall Tracer $\left(\mathscr{C}_{\!f}\right)$ dans un repère orthonormé $\left(0,ec{i},ec{j}\right)$.

- ①- Montrer par récurrence que : $(\forall n \in \mathbb{N})$: $u_n \succ 0$.
- ②- Montrer que $(\forall n \in \mathbb{N})$: $u_{n+1} \leq \frac{u_n}{2}$ puis en déduire que la suite (u_n) est décroissante.
- ③- Montrer que : $(\forall n \in \mathbb{N})$: $u_n \leq \left(\frac{1}{2}\right)^n$ et déterminer sa limite.