Niveau: 2 P.C. + 2 S.V. SERIE

FONCTIONS PRIMITIVES

Rappel:

Operations sur les fonctions primitives		Tableau des fonctions primitives des fonctions usuelles	
Fonction h	H primitive de h	Fonction f	F primitives de f
	-		$(\mathbf{c} \in \mathbb{R})$
h = f '+g'	H = f + g	$\mathbf{f}(\mathbf{x}) = 0$	$\mathbf{F}(\mathbf{x}) = \mathbf{c}$
$h = \alpha f'$	$H = \alpha f$	$f(x) = a; (a \in \mathbb{R})$	$\mathbf{F}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{c}$
$\mathbf{h} = \mathbf{f} ' \times \mathbf{g} + \mathbf{f} \times \mathbf{g} '$	$\mathbf{H} = \mathbf{f} \times \mathbf{g}$	f(x) = x	$\mathbf{F}(\mathbf{x}) = \frac{1}{2}\mathbf{x}^2 + \mathbf{c}$
$\mathbf{h} = -\frac{\mathbf{g'}}{\mathbf{g^2}}$	$\mathbf{H} = \frac{1}{\mathbf{g}}$	$f(x) = x^{n}; (n \in \mathbb{Z} \setminus \{-1\})$	$F(x) = \frac{1}{n+1}x^{n+1} + c$
$\mathbf{h} = -\frac{\mathbf{g'}}{\mathbf{g}^2}$ $\mathbf{h} = \frac{\mathbf{f' \times g - f \times g'}}{\mathbf{g}^2}$	$\mathbf{H} = \frac{\mathbf{f}}{\mathbf{g}}$	$f(x) = x^r; (r \in \mathbb{Q} \setminus \{-1\})$	$F(x) = \frac{1}{r+1}x^{r+1} + c$
h=f'×f ⁿ مح n≠−1	$H = \frac{1}{n+1}f^{n+1}$	$f(x) = \frac{1}{\sqrt{x}}$	$\mathbf{F}(\mathbf{x}) = 2\sqrt{\mathbf{x}} + \mathbf{c}$
h=f'×f ^r ⊶ r≠−1	$H = \frac{1}{r+1}f^{r+1}$	$\mathbf{f}(\mathbf{x}) = \sin(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = -\mathbf{cos}(\mathbf{x}) + \mathbf{c}$
$\mathbf{h} = \mathbf{f}' \times \mathbf{g}' \circ \mathbf{f}$	$\mathbf{H} = \mathbf{g} \circ \mathbf{f}$	$f(x) = \sin(ax + b) \ a \neq 0$	$F(x) = -\frac{1}{a}\cos(ax+b) + c$
$\mathbf{h} = \mathbf{f}'(\mathbf{a}\mathbf{x} + \mathbf{b}) \ \mathbf{a} \neq 0$	$H = \frac{1}{a}f (ax + b)$	$\mathbf{f}(\mathbf{x}) = \mathbf{cos}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \sin(\mathbf{x}) + \mathbf{c}$
		$f(x) = \cos(ax + b) \ a \neq 0$	$F(x) = \frac{1}{a}\sin(ax+b) + c$
		$f(x) = 1 + \tan^2(x) = \frac{1}{\cos^2 x}$	$\mathbf{F}(\mathbf{x}) = \mathbf{tan}(\mathbf{x}) + \mathbf{c}$
		$f(x) = \frac{f'(x)}{\sqrt{f(x)}}$	$\mathbf{F}(\mathbf{x}) = 2\sqrt{\mathbf{f}(\mathbf{x})} + \mathbf{c}$
		$f(\mathbf{x}) = \frac{1}{\mathbf{x}^2}$	$\mathbf{F}(\mathbf{x}) = -\frac{1}{\mathbf{x}} + \mathbf{c}$

1.

Déterminer les fonctions primitives de chaque fonctions suivantes :

1.
$$f(x) = 8x^7 - 12x^4 - 14x^3 - 6x + 5$$
, $f(x) = -4x^5 + \frac{2}{x^2} + 3$, $f(x) = (11x + 1)^5$.

2.
$$f(x) = \frac{20x-6}{(5x^2-3x+2)^8}$$
, $f(x) = \frac{1}{\sqrt{2x+5}}$, $f(x) = \frac{x^8}{\sqrt{4x^9+1}}$.

3.
$$f(x) = \frac{x}{\sqrt{x-1}}$$
, $f(x) = \sqrt[3]{x^5}$, $f(x) = \sqrt[3]{5x-7}$, $f(x) = x^7 \cdot \sqrt{5x^8-7}$.

4.
$$f(x) = 3\sin(7x) - 5\cos(2x - \pi)$$
.

Niveau: 2 P.C. + 2 S.V. SERIE

FONCTIONS PRIMITIVES

Déterminer la fonctions primitive g de la fonction f tel que g qui prend la valeur \mathbf{y}_0 par g en \mathbf{x}_0 , pour chaque cas suivant :

1.
$$y_0 = 0; x_0 = 1$$
; $f(x) = x^3 - 6x^2 + 1$.

2.
$$y_0 = 1; x_0 = 1$$
; $f(x) = (x+1)^3$.

3.

Soit f la fonction numérique définie sur l'intervalle $I =]2, +\infty[$ par : $f(x) = \frac{x^2 - 4x + 2}{(x-2)^2}$.

- 1. Déterminer a et b de \mathbb{R} tel que : $f(x) = \frac{x^2 4x + 2}{(x-2)^2}$.
- 2. En déduire les fonctions primitives de f sur I.

Cours des fonctions : logarithme et exponentielle (du courage)

- $f(x) = e^x \text{ est définie et continue et dérivable sur } \mathbb{R} \text{ et } f'(x) = (e^x) = e^x \text{ et}$ $g'(x) = (e^{u(x)})' = u'(x) \times e^{u(x)} \text{ avec } u(x) \text{ est une fonction dérivable sur un intervalle } I.$

4. Bac 2014 session normale

- **a.** Montrer que $H: x \mapsto x \ln x$ est une primitive de la fonction $h \mapsto 1 + \ln x$ sur $]0,+\infty[$ (0,5)
- <u>5.</u> Bac 2015 session normale (fuite)

 $\text{Trouver sur } D_f = \left]0; e\right[\ \cup \]e; + \infty \left[\ \text{les fonctions primitives de la fonction suivante} \quad h: x \mapsto \frac{1}{x \left(1 - \ln x\right)} \right. , \text{ on }$

remarquera $\frac{1}{x(1-\ln x)} = \frac{\frac{1}{x}}{1-\ln x}$ pour tout x de D_f ...

6. Bac 2015 session de rattrapage

Trouver sur $D_f =]0,+\infty[$ les fonctions primitives de la fonction suivante $h: x \mapsto \frac{\ln x}{x}$.

7. Bac 2017 session normale

Niveau: 2 P.C. + 2 S.V. SERIE

FONCTIONS PRIMITIVES

Montrer que : $H: x \mapsto 2\ln x - x$ est une fonction primitive de la fonction $h: x \mapsto \frac{2}{x} - 1$ sur l'intervalle

8. Bac 2017 session de rattrapage

Vérifier que : $H: x \mapsto (x-1)e^x$ est une fonction primitive de la fonction $h: x \mapsto xe^x$ sur l'intervalle $\mathbb R$.

9. B ac 2018 session normale

Vérifier que : $\mathbf{H}: \mathbf{x} \mapsto (\mathbf{x}^2 + 2\mathbf{x} + 2)\mathbf{e}^{-\mathbf{x}}$ est une fonction primitive de la fonction $\mathbf{h}: \mathbf{x} \mapsto -\mathbf{x}^2\mathbf{e}^{-\mathbf{x}}$ sur \mathbb{R}

10. Bac 2019 session normale

<u>a.</u> Montrer que : $H: x \mapsto x \ln x - x$ est une primitive de la fonction $h: x \mapsto \ln x$ sur $]0,+\infty[$. (0,5)