
السنة الدراسية : 2016-2015	الفرض المحروس رقم 5 الدورة الثانية	الثانوية التاهيلية وادي الذهب	
المستوى: الثانية باك علوم فيزيائية	مدة الإنجاز : ساعتان	مادة : الفيزياء و الكيمياء	

يؤخذ بعين الاعتبار تنظيم ورقة التحرير و يخصص لذلك نقطة يجب أن تعطى العلاقة الحرفية قبل التطبيق العددي

تمرين 1: التحليل الكهربائي (7نقط)

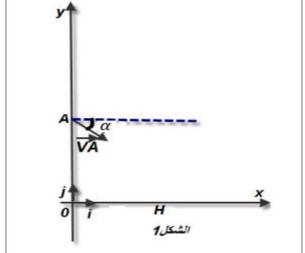
نريد تغطية خاتم بطبقة من النحاس . لذلك ننجز التحليل $(Cu^{2+} + SO_4^{2-})$ الكهربائي لمحلول كبريتات النحاس باتخد الخاتم أحد الإلكترودين .

يتصاعد غاز o_2 ثنائي الأوكسيجين عند الإلكترود الاخر أثناء التحليل الكهربائي .

نعطى المزدوجتين المتدخلتين في التحليل الكهربائي: $O_2/H_2O_9 Cu^{2+}/Cu$

1-أتمم تبيانة التركيب الدارة لإنجاز هذا التحليل الكهربائي محددا الأنود و الكاثود . (1ن)

2-اكتب نصف معادلة التفاعل التي تحدث عند كل إلكترود . (1ن) 3-استنتج المعادلة الكيميائية الحصيلة للتحليل الكهربائي . (1ن) 4-علما ان شدة التيار $I = \mathbf{0}, \mathbf{9} A$ و أن الكتلة اللازمة من النحاس


(ن) المدة الزمنية اللازمة لهذه العملية (استعمل الجدول الوصفي). m=3,25 g(ان) . Δt عين حجم الغاز O_2 الناتج خلال المدة -5

(ن) . $m{m}$ في الواقع مردود التحليل هو 80% عين المدة الزمنية $\Delta t'$ اللازمة للحصول على الكتلة 1نعطی :

$$V_m = 24 L. mol^{-1}$$
 , $F = 96500 C. mol^{-1}$, $M(cu) = 63.5 g. mol^{-1}$

تمرين 2 : حركة قذيفة في مجال الثقالة (6نقط)

تنطلق کریة (S) من نقطة A بسرعة بدئیة $V_A = 2 \ m. \ s^{-1}$. تکون متجهة السرعة $ec{V}_A$ زاوية " $lpha = 45^\circ$ مع الخط الأفقى (انظر الشكل 1) . A عندما يكون الجسم (S) في النقطة t=0. $OA = h = 0,5 \, m$ نعطى المسافة H يسقط الجسم S) على سطح الأرض عند نقطة 1-بتطبيق القانون الثاني لنيوتن أوجد تعبير المعادلتين الزمنيتين

(ن 1,5) . $(0,\vec{\iota},\vec{j})$ في المعلم y(t) و x(t)2-بين أن معادلة المسار تكتب : (1,5 ن) $y = -2,5x^2 - x + 0,5$

3-أوجد إحداثيات النقطة H (1,5).

لاميزات متجهة السرعة \vec{V}_H عند النقطة H -أوجد مميزات متجهة السرعة أ

تمرین 3 : حرکة سقوط راسی لصندوق + مظلة (6 نقط)

تستعمل الطائرات المروحية في بعض الحالات لإيصال مساعدات إنسانية إلى مناطق منكوبة يتعذر الوصول إليها عبر البر . لكي لا تتلف المواد الغدائية عند ارتطامها بالارض تم ربط صندوق بمظلة تمكنه بالنزول ببطئ تبقى المروحية ساكنة على ارتفاع H من الأرض عند النقطة O .

يسقط الصندوق ومظلته رأسيا بدون سرعة بدئية ($V_0=0$)عند اللحظة $t_0=0$ (أنظر الشكل 1) .

نهمل دافعة أرخميدس خلال السقوط الراسي للمجموعة .

. يطبق الهواء قوى الاحتكاك نعبر عنها بالعلاقة $ec{f} = -\mathbf{100}. ec{V}$ حيث $ec{V}$ تمثل متجهة سرعة الصندوق

. m=150~kg كتلة المجموعة S الصندوق + المظلة

. $q = 10 \; m. \, s^{-2}$ نأخذ شدة الثقالة

. t يمثل منحنى الشكل 2 تغيرات السرعة بدلالة الزمن

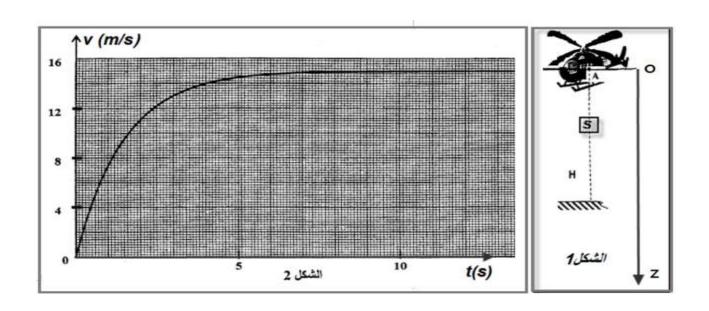
1-أجرد القوى التي تخضع لها المجموعة (S) $\{$ الصندوق + المضلة $\}$.(1ن)

2-بتطبيق القانون الثاني لنيوتن بين أن المعادلة التفاضلية التي تحققها السرعة v خلال السقوط الرأسي تكتب : (1ن)

$$\frac{dV}{dt} = 10 - \frac{2}{3}V$$

(ن): و استنتج التعبير التالي V_{lim} و استنتج التعبير التالي $\frac{dV}{dt} = A\left(1 - \frac{V}{V_{lim}}\right)$

$$\frac{dV}{dt} = A\left(1 - \frac{V}{V_{lim}}\right)$$


4- بالإعتماد على مبيان الشكل 2 عين:

(1ن) للسقوط au وكذلك الزمن المميز au للسقوط au

(0.5) . القيمة التقريبية Δt لمدة النظام البدئي Δt

5-بالإعتماد على طريقة أولير والمعادلة التفاضلية أتمم ملأ الجدول التالي : (1,5ن)

$t_i(s)$	0	0,1	0,2	0,3	0,4	0,5	0,6
$V_i(m.s^{-1})$	0	1,00	1,93	2,80	V_4	4,37	5,08
$a_i(m.s^{-2})$	10,00	9,33	8,71	8,12	a_4	7,07	6,60

