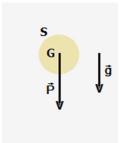
السقوط الرأسي لجسم صلب

I _ محال الثقالة

<u>تعریف</u>

جميع الأجسام الموجودة على سطح الأرض أو في الحيز المحيط بها تخضع لقوة مطبقة من طرف الأرض تسمى بوزن الجسم $ec{ ext{g}}$ و هي ناتجة عن المجال المحدث من طرف الأرض يسمى بمجال الثقالة ونرمز له ب $ec{ ext{g}}$ بحيث أن



ممبزات متجهة مجال الثقالة g

ـ الاتجاه : الرأسي المار من مركز قصور الجسم .

_ المنحى : نحو الأرض

_ المنظم : شدة مجال الثقالة ونعبر عنها بالوحدة N/kg⁻¹

ملحوظة: تتعلق شدة مجال الثقالة بالارتفاع وبخط العرض.

II ــ القوى المطبقة من طرف مائع على حسم صلب .

1_ قوى الاحتكاك المائع

كل جسم في حركة داخل مائع ، يخضع إلى قوى احتكاك مطبقة عليه من طرف هدا الأخير . (قوى التماس وموزعة) $ec{\mathbf{f}}$ تكافئ هذه القوى ، قوة وحيدة تسمى **قوة الاحتكاك المائع** ورمز لها ب

الأصل : مركز قصور الجسم

خط تأثيرها هو اتجاه متحهة سرعة مركز القصور G للجسم

المنحى : عكس منحى متجهة مركز فصور الجسم

الشدة : تتعلق بشكل الجسم وبأبعاده ، وبحالة سطحه ، وتتعلق كذلك بلزوجة المائع وبسرعة الجسم المتحرك بالنسبة للمائع

ننمذج شدتها بالعلاقة التالية : $f = k.v_{c}^{n}$ حيث k ثابتة تتعلق بطبيعة المائع وبشكل الجسم الصلب

نضع $v_G = v$ ، فتصبح العلاقة

$$f = k.v^{n}$$
 (2)

ملحوظة : عندما تكون قيمة السرعة صغيرة (أقل من lcm/s) ، نأخذ n=1 ، فتصبح العلاقة السابقة كالأتي : f = k.v ، في هذه الحالة تتعلق k بلزوجة المائع .

عندما تكون قيمة السرعة v متوسطة (أكبر من 1cm/s وأقل من 10m/s) ، نأخذ n=2 تصبح العلاقة السابقة $f = k.v^2$ في هذه الحالة ، لاتتعلق k بلزوجة المائع ، بل تتعلق بكتلته الحجمية.

يخضع كل جسم مغمور كليا أو جزئيا في مائع لقوى تماس ضاغظة مطبقة على سطح الجسم ، يسمي مجموع هذه القوى ـ بدافعة أرخميدس .

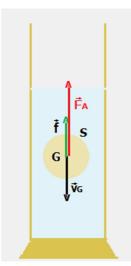
ـ نقطة تأثيرها : مركز ثقل المائع المزاح

ـ الانجاه : الخط الرأسي

ـ المنحى : نحو الأعلى

لشدة : تساوي شدة وزن الحجم المزاح للمائع : $|F_A = m_0 g = \rho_f. V.g|$ بحيث أن m_0 كتلة $|F_A = m_0 g = \rho_f. V.g|$

(N) شدة مجال الثقالة (N/kg) أو F_{A} ، m/s^{2} شدة دافعة أرخميدس



III _ السقوط الرأسي لجسم صلب بالإحتكاك

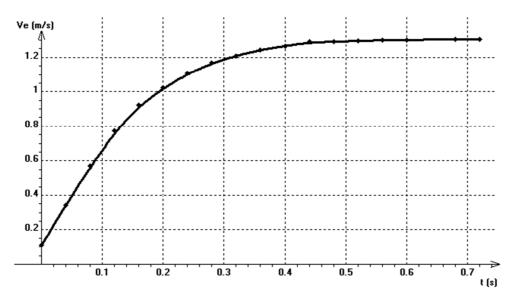
1 ـ الدراسة التجريبية

الهدف من التجربة : نمذجة حركة سقوط كرية في مائع بطريقة أولير

العدة التجريبية : مخبار مدرج من فئة 1ℓ . محلول الغليسيرول المخفف كتلته الحجمية $\rho_{\rm f}=1,07{\rm g}\,/\,{\rm m}\ell$ ، كرية فولاذية كتلتها $m_{\rm b}=6,88{\rm g}$ وشعاعها $R=5,9{\rm mm}$ نسجل حركة الكرية في السائل بواسطة كاميرا رقمية ونحفظ الشريط المسجل لحركة الكرية في ملف من نوع (avi) .

نستعمل برنم أفيميكا Avimeca لعملية تحديد مواضع النقط الموافقة لمواضع G مركز قصور الكرية خلال سقوطها مع اختيار محور رأسـي موجه نحو الأسـفل فنكتب قيم الأزواج (t,y) .

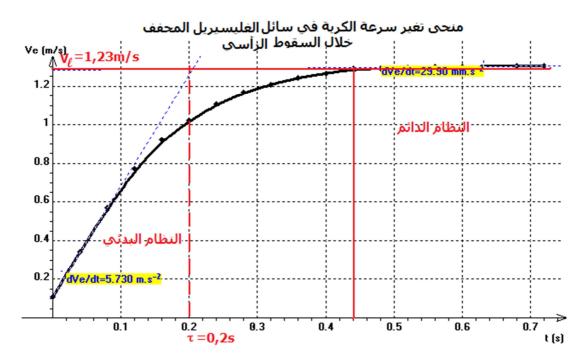
، $v=\dfrac{\mathrm{d}y}{\mathrm{d}t}$ وهي $\vec{\mathrm{v}}_{\mathrm{G}}$ وهي أحداثية متجهة السرعة $\vec{\mathrm{v}}_{\mathrm{G}}$ وهي regressi نرسل جدول القياس إلى برنم المجدول وراسم المنحنيات regressi وبعد تعريف إحداثية متجهة السرعة $\vec{\mathrm{v}}_{\mathrm{G}}$ وهي يقوم البرنم بحساب قيم v ثم رسم منحنى تغيرات v بدلالة الزمن t على الشاشة ، ثم نحفظ الملف .



ستثمار

1 _ استغلال المنحنى v=f(t)

المنحنى المحصل عليه بواسطة البرنم Regressi :



أ ــ يبرز المنحنى وجود نظامين ، حدد مبيانيا المجال الزمني لكل نظام مبرزا طبيعة حركة G مركز قصور الكرية في كل نظام .

- لنظام البدئي: $v_{\rm exp}$ دالة زمنية متغيرة -
- . في النظام الدائم : $v_{\rm exp} \simeq v_{\ell}$ أي تبقى ثابتة خلال الزمن .

ب ــ هل تتزايد أم تتناقص متجهة التسارع $ec{a}_{
m G}$ مركز قصور الكرية خلال الحركة ؟ علل جوابك .

ومن خلال المنحنى ، t عند كل لحظة $v_{_G}$ عند كل لحظة التغير المعامل الموجه للدالة $a_{_G}(t)=rac{\Delta v_{_G}}{\Delta t}$

يلاحظ أن المعامل الموجه يتناقص مع الزمن t و كذلك التسارع a_G

قصوية
$$\left(\frac{\mathrm{d} v_{\mathrm{G}}}{\mathrm{d} t}\right)_{\mathrm{t=0}}$$
 قصوية __

. في النظام الدائم $\infty + \leftarrow t$ لدينا $t \to +\infty$ لدينا $v_G = v_\ell$ لكون أن $v_G = v_\ell$ لكون أن حركة الكرية رأسية منتظمة .

وبالتالي فإن متجهة التسارع تتناقص إلى أن تأخذ قيمة منعدمة .

ج ـ مثل على الشكل الخط المقارب للمنحني .

. v_ℓ يمثل نقطة تقاطع هذا الخط مع محور السرعات قيمة السرعة الحدية v_ℓ حدد قيمة

 $v_{\ell} = 1,23 \text{m/s}$: V_{ℓ} تحدید قیمة

د ـ مثل في نفس المنحنى ، المماس للمنحنى عند الأصل O . يتقاطع هذا المماس على الخط المقارب في نقطة أفصولها au نسميه الزمن المميز . عين قيمة au .

 $\tau = 0,2s$ لدينا

 ${f t}$ =0 على المحور الرأسي عند اللحظة ${f a}_0$ على المحور الرأسي عند اللحظة ${f a}_0$

t=0 المعامل الموجه في النقطة a المعامل الموجه

$$a_0 = \left(\frac{dv_G}{dt}\right)_{t=0} = \frac{\Delta v_G}{\Delta t} = \frac{v_\ell}{\tau} = 6.12 \text{m/s}^2$$

2 ـ الدراسة النظرية

أ ــ أذكر مرجعا يمكن اعتماده في دراسة حركة G مركز قصور الكرية .

مرجعا مرتبط بالمختبر والذي يعتبر كمرجع غاليلي .

<u>ں _ المعادلة التفاضلية للحركة</u>

أثناء سقوط الكرية ، ما هي القوى المطبقة عليها . حدد مميزات كل القوى المطبقة على الكرية . حدد من بين القوى الثلاث ، القوة التي تتغير شدتها خلال النظام البدئي .

دراسة حركة كرية كتلتها $m_{
m h}$ و حجمها V وكتلتها الحجمية $ho_{
m bille}$ في مائع

. كتلته الحجمية $ho_{ ext{fluide}}$ في حالة سكون بالنسبة للجسم المرجعي الأرضي

بما أن حركة الكرية رأسية ومنحاه نحو الأسفل ، نختار كمعلم متعامد

و ممنظم موجه نحو الأسفل (O,k) .

_ المجموعة المدروسة: الكرية

ـ جرد القوى الخارجية المطبقة على الكرية خلال سقوطها:

 $\vec{P} = m.\vec{g}$: وزن الكرية

 $\vec{F}_{_{\!A}} = -m_{_{\!f}}.\vec{g} = ho_{_{\!f}}.V.\vec{g}$: دافعة أرخميدس: $\vec{F}_{_{\!A}}$

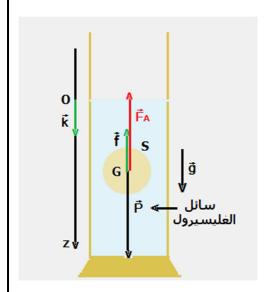
 $\vec{\mathbf{f}} = -\mathbf{k}.\mathbf{v}^{\mathrm{n}}.\mathbf{k}$: قوة الاحتكاك المائع

القوة التي تتغير شدتها خلال النظام البدئي هي قوة الاحتكاك المائع

ج ــ أكتب العلاقة التي تربط بين مجموع القوى الخارجية المطبقة على الكرية و $m_{_b}$ كتلة الكرية ومتجهة التسارع لمركز قصور الجسم $ar{a}_{_{
m G}}$.

نطبق القانون الثاني لنيوتن على الكرية في مرجع مرتبط بالمختبر وهو مرجعا غاليليا تكون لدينا العلاقة المتجهية التالية :

$$\vec{f} + \vec{F}_A + \vec{P} = m_b \cdot \vec{a}$$



د ـ بإسقاط هذه العلاقة على المحور (O, \vec{k}) الرأسي الموجه نحو الأسفل ، أثبت العلاقة التالية :

$$(1) \frac{\mathrm{dv}}{\mathrm{dt}} = A - Bv^{\mathrm{n}}$$

. عبر عن A و B بدلالة m_{h} و g و g و g

: نحصل على المتجهية على المحور (O, \vec{k}) ، نحصل على المتساوية التالية

$$m_{\text{bille}}g - m_f g - kv^n = m_{\text{bille}}.a$$

$$(m_b - m_f)g - kv^n = m_b \cdot \frac{dv}{dt}$$

$$A = \frac{(m_b - m_f)}{m_b} g \qquad B = \frac{k}{m_b}$$

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = \mathbf{A} - \mathbf{B}\mathbf{v}^{\mathrm{n}} \qquad (4)$$

تمثل هده المعادلة ، المعادلة التفاضلية لحركة G مركز قصور الكرية خلال السقوط الرأسي في السائل

2 _ تحديد المقادير المميزة للحركة

، n و B و A بدلالة بين أن سرعة G تبلغ قيمة حدية $_{
m ext{ iny V}}$ ، واعط تعبير $_{
m ext{ iny V}}$ بدلالة $_{
m ext{ iny C}}$.

 ${
m v}_{\ell}$ تبين التجربة أن متجهة السرعة للكرية تتناهى إلى قيمة حدية ، تسمى بالسرعة الحدية للكرية

 $\frac{\mathrm{d} v}{\mathrm{d} t}$ = 0 : نأب أي أن عبيث تصبح حركة الكرية حركة مستقيمية منتظمة أي

في المعادلة التفاضلية للحركة نستنتج :

$$A - Bv_{\ell}^{n} = 0 \Rightarrow v_{\ell} = \left(\frac{A}{B}\right)^{\frac{1}{n}}$$

$$\mathbf{v}_{\ell} = \left(\frac{\mathbf{g}}{\mathbf{k}} \left(\mathbf{m}_{\mathbf{b}} - \mathbf{m}_{\mathbf{f}}\right)\right)^{\frac{1}{\mathbf{n}}} \tag{5}$$

ـ عندما تقارب سرعة الكرية السرعة الحدية v_{ℓ} تخضع حركة G إلى نظام يسمى النظام الدائم ويتميز بثبات السرعة .

<u>3 ــ النظام البدئي</u>

. t=0 عند اللحظة ${
m a}_{
m o}$ عند اللحظة ${
m t}=$ عند اللحظة

قبل تحرير الكرية فهي تخضع إلى قوى مجموعها منعدم .

في اللحظة t_0 =0 نحرر الكرية ، فيصبح مجموع القوى المطبقة عليها غير منعدم ، فتبدأ حركة السقوظ الرأسي للكرية وتتزايد سرعتة مركز قصورها : تسمى هذه المرحلة بالنظام البدئي بعد ذلك تتطور حركة G نحو نظام دائم يصبح فيه مجموع القوى المطبقة على الكرية مرة أخرى منعدم : $\sum \vec{F}_{\rm ext} = \vec{0}$ أي أن a=0 .

G بحيث أن a_0 هو التسارع البدئي لمركز القصور a_0 الدينا a_0 بحيث أن a_0 الدينا a_0 لدينا a_0 لدينا a_0 لدينا القصور عند اللحظة a_0 بحيث أن a_0 بحيث أن

 $\vec{f} = \vec{0}$ للكرية . لدينا كذلك

$$(m_b - m_f)g = m_b.a_0 \Rightarrow a_0 = \frac{(m_b - m_f)g}{m_b} = \left(1 - \frac{m_f}{m_b}\right)g$$
 (6)

مبيانيا ، تساوي قيمة التسارع البدئي قيمة المعامل الموجه للمماس للمنحنى v=f(t) عند اللحظة $t_0=0$

$$a_0 = \frac{v_{\ell}}{\tau} = 6,12 \,\mathrm{m/s^2}$$

(2)
$$\frac{\mathrm{d} v}{\mathrm{d} t} = A \left(1 - \left(\frac{v}{v_\ell} \right)^n \right)$$
 : و ـ أثبت أن العلاقة (1) تكتب على النحو التالي

$$a = A - Bv^n \implies 0 = A - Bv_{\ell}^n$$

$$v_{\ell}^{n} = \frac{A}{B}$$

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{A} \left(1 - \frac{\mathbf{B}}{\mathbf{A}} \mathbf{v}^{\mathrm{n}} \right)$$

$$\frac{B}{A} = \frac{1}{v_{\ell}^{n}} \Rightarrow \boxed{\frac{dv}{dt} = A \left(1 - \left(\frac{v}{v_{\ell}}\right)^{n}\right)}$$
(7)

v=0 ويمكن كذلك أن نبين أنه في اللحظة $a_0=A$ t=0 ويمكن كذلك أن نبين أنه في اللحظة

4 ـ الزمن المميز للحركة

يتقاطع الخط المماس للمنحنى v=f(t) مع الخط المقارب للمنحنى في نقطة أفصولها τ نسميه الزمن المميز للحركة $\overline{v_{\ell}=a_{0} au}$ (8) تحدد قيمة τ بالعلاقة : (8)

من إعطاء رتبة قدر مدة النظام البدئي . au

5 _ حل المعادلة التفاضلية للحركة بتطبيق طريقة أولير Euler

أ ــ مبدأ الطريقة

ـ تمكن طريقة أولير من التوصل لحل تقريبي للمعادلة التفاضلية للحركة بتعويض v(t) بدالة تقاربها محليا بحيث نعلم أن

$$a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} \Rightarrow a(t) = \left(\frac{dv}{dt}\right) \approx \frac{v(t + \Delta t) - v(t)}{\Delta t}$$

$$\boxed{v(t + \Delta t) = v(t) + a(t).\Delta t \qquad (9)}$$

تتضمن هذه الطريقة مرحلتين من الحساب التي يجب إنجازها بصفة تكرارية لهذا نم وصفها بطريقة رقمية تكرارية .

كما أَن استعمال هذه الطّريقّة يستوجب معرفة سرعة مركز القُصُور في لُحظة t والّتي مَا تُكون في غالب الأحيان هي السرعة البدئية v₀ في اللحظة t =0 .

المرحلة الأولى :

من خلال العلاقة (1) والتي يمكن كتابتها على الشكل التالي : $v(t_{i+1}) = v(t_i) + a(t_i) . \Delta t \equiv v_{i+1} = v_i + a_i \times \Delta t$ بحيث أن

$$a_i = A - B.v_i^n$$

 $a_0 = A - Bv_0^n$ عند اللحظة t=0 عند اللحظة

في المرحلة الثانية : -

$$\mathbf{v}_1 = \mathbf{v}_0 + \mathbf{a}_0 \mathbf{v}_0^{\mathrm{n}} \Delta \mathbf{t}$$
 نحسب

I II A.

تسمى خطوة الحساب Δt

ونعيد حساب التسارع والسرعة المواليين بنفس الطريقة

تسارع	السرعة	اللحظة
$\mathbf{a}_0 = \mathbf{A} - \mathbf{B} \times \mathbf{v}_0^{T}$	\mathbf{v}_0	$t_0 = 0$
$a_1 = A - B \times v_1^1$	$\mathbf{v}_1 = \mathbf{v}_0 + \mathbf{a}_0 \times \Delta \mathbf{t}$	$t_1 = t_0 + \Delta t$
$\mathbf{a}_2 = \mathbf{A} - \mathbf{B} \times \mathbf{v}^{I}$	$\mathbf{v}_2 = \mathbf{v}_1 + \mathbf{a}_0 \times \Delta \mathbf{t}$	$\mathbf{t}_2 = \mathbf{t}_1 + \Delta \mathbf{t}$

ثم نبحث عن قيم n و A و B التي تمكن من تطابق القيم النظرية المحصلة باستعمال طريقة أولير مع القيم التجريبية أي تطابق المنحنيين .

استعمال طريقة أولير بواسطة البرنم Regressi :

ـ ننقر على ايقونة Euler

حساب k :

حساب السرعة الحدية :

 ${
m v}_{\ell}=1,23{
m m/s}$ من خلال الشكل يتبين أن السرعة الحدية

في المعادلة التفاضلية:

$$a = A - Bv^{n} \Rightarrow 0 = A - Bv^{n}_{\ell}$$
$$v^{n}_{\ell} = \frac{A}{R}$$

الدينا $B = \frac{k}{m}$ وبتعويض B في التعبير (1) نحصل على

$$B = \frac{A}{v_{\ell}^{n}} \Rightarrow \frac{k}{m_{b}} = \frac{A}{v_{\ell}^{n}}$$

$$k = m_b . \frac{A}{v_\ell^n}$$

لنحسب A :

حساب كتلة السائل المزاح :

 $ho_{_{
m f}}=rac{m_{_{
m f}}}{V_{_{
m bille}}}$ \Rightarrow $m_{_{
m f}}=
ho_{_{
m f}}V_{_{
m bille}}$: بما أن الكرية مغمورة كليا في الماء فإن الحجم المزاح للسائل هو حجم الكرية

$$V_{\text{bille}} = \frac{4}{3}\pi r^3 = 0.860\text{cm}^3$$

 $m_f = \rho_f V_{bille} = 1,07 \times 0,860 = 0,92g$: وبالتالي فإن

 $m_{\rm b} = 6,88$ g : لدينا كذلك كتلة الكرية

$$A = 9.81 \left(\frac{m_b - m_f}{m_8} \right) = 8.49 \,\text{m/s}^2$$

مبدأ المعالجة الرقمية بواسطة راسم المنحنيات Regressi :

 $\Delta t = 0.04 \mathrm{s}$ نقوم بحساب السرعة v خلال مدد زمنية متتالية تساوي Δt تسمى خطوة الحساب نختار

$$\left(rac{\mathrm{dv}}{\mathrm{dt}}
ight)\![\mathrm{i}]\!=\!\mathrm{A}-\mathrm{Bv^n}\left[\mathrm{i}
ight]$$
 بمعرفة السرعة v_i في اللحظة t_i ، تكون المعادلة التفاضلية على الشـكل التالي :

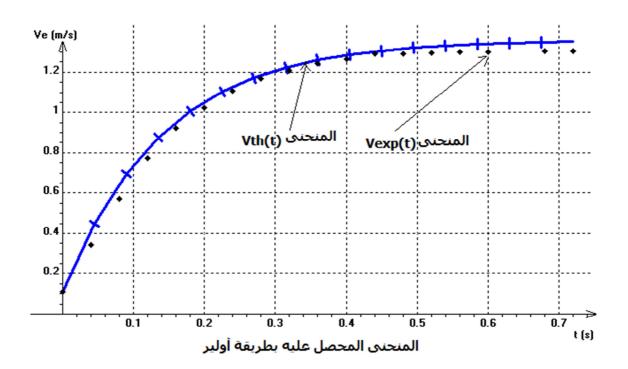
: نعلم أن التسارع في اللحظة t_i بطريقة تقريبية هو

$$\begin{split} &\left(\frac{dv}{dt}\right)\![i] = \frac{v\!\left[i+1\right] - v\!\left[i\right]}{\Delta t} \Rightarrow v\!\left[i+1\right] = v\!\left[i\right] + \left(\frac{dv}{dt}\right)\![i].\Delta t \\ &v\!\left[i+1\right] = v\!\left[i\right] + \left(A - Bv^n\left[i\right]\right).\Delta t \\ &v\!\left[i+1\right] = v\!\left[i\right] + A\!\left(1 - \frac{B}{A}v^n\left[i\right]\right).\Delta t \\ &\frac{A}{B} = \frac{1}{v_\ell^n} \Rightarrow v\!\left[i+1\right] = v\!\left[i\right] + A\!\left(1 - \frac{v^n\left[i\right]}{v_\ell^n}\right).\Delta t \\ &v\!\left[i+1\right] = v\!\left[i\right] + A\!\left(1 - \left(\frac{v\!\left[i\right]}{v_\ell}\right)^n\right).\Delta t \\ &v\!\left[i\right] = v\!\left[i-1\right] + A\!\left(1 - \left(\frac{v\!\left[i-1\right]}{v_\ell}\right)^n\right) \end{split}$$

ندخل المعطيات في البرنم الراسم للمنحنيات فنحصل على المنحنى بالأزرق الموافق لطريقة أولير حيث A=8,37m/s² و n=1.

$$k = m_b \cdot \frac{A}{v_c} = 0,0436SI : k$$

$$B = \frac{k}{m_h} = 6,34s^{-1}$$
 : **B** ونحسب



تمارين حول السقوط الرأسي لجسم صلب

التمرين 1 : حساب دافعة أرخميدس

g = 10 N/kg لدينا كرية (S) حجمها $V = 4.4 \times 10^{-6} \, \mathrm{m}^3$ وكتلتها $V = 4.4 \times 10^{-6} \, \mathrm{m}^3$

- 1 ـ أحسب P وزن الكرية
- $ho_{air} = 1.3 {
 m kg/m}^3$ ورحد الكرية في الهواء حيث كتلته الحجمية 2
 - 1 2 أحسب F_{A} شدة دافعة أرخميدس المطبقة على الكرية
 - (P/F_A) قارن وزن الكرية وشدة دافعة أرخميدس وزن الكرية وشادة
- $ho_{
 m lig} = 0.89 {
 m kg}\,/\,{
 m m}^3$ نجعل الكرية تسقط في سائل حيث كتلته الحجمية 3
 - قـ 1 أحسب F_{A}^{\prime} شدة دافعة أرخميدس المطبقة على الكرية
 - (P/F'_A) قارن وزن الكرية وشدة دافعة أرخميدس (P/F'_A)

التمرين 2 سقوط قطرة ماء في الهواء

خلال السقوط الرأسي لقطرة ماء حجمها $\, {
m V} \,$ في الهواء ، يطبق عليها هذا الأخير ، بالإضافة إلى القوى الأخرى ، قوى احتكاك

تناسب اطرادا ومتجهة السرعة $\vec{v}:\vec{v}:\vec{v}$ معامل الاحتكاك المائع

. الكتلة الحجمية للماء و ho_a الكتلة الحجمية للهواء ho_e

- 1 ما هي وحدة k في النظام العالمي للوحدات
 - 2 _ اجرد القوى المطبقة على القطرة
- . $ec{a}_{
 m G}$ _ بتطبيق القانون الثاني لنيوتن أكتب التعبير المتجهي لمجموع القوى المطبقة على القطرة وعلاقته مع متجهة التسارع $ec{a}_{
 m G}$
 - - . بين أن القطرة تأخذ سرعة حدية $\, {
 m v}_{\ell} \,$ خلال السقوط . عبر عن هده السرعة بدلالة المعطيات .
 - 6 ــ أحسب قيمتها

 $g=9,8m\,/\,s^2$: $k=3,4\times 10^{-9}\,kg\,/\,s$: $\rho_e=1,3g\,/\,L$: $V=4,2\times 10^{-15}\,m^3$: نعطني

التمرين 3 : سقوط كرية من البلاستيك في الزيت

. $\mathrm{m}=0.52\mathrm{g}$ نطلق رأسيا في مخبار مملوء بالزيت انطلاقا من سطحه الحر كرية من البلاستيك ، قطرها $\mathrm{d}=1\mathrm{cm}$ و كتلتها

. $ho_{
m h} = 900 {
m kg}\,/\,{
m m}^3$ ين أن الكرية ستغمر كليا في الزيت حيث الكتلة الحجمية لهذا الأخير $ho_{
m h} = 900 {
m kg}\,/\,{
m m}^3$

$$V = \frac{4}{3}\pi r^3$$
: r نعطي تعبير حجم كرية شعاعها

- ب _ أجرد القوى المطبقة على الكرية خلال سقوطها وحددا مميزاتها .
- 2 ـ تعبير قوة الاحتكاك المائع المطبقة على الكرية خلال سقوطها الرأسي في الزيت هو : f=k imes v بحيث أن v السرعة اللحظية و k معامل تعبيره $k=3\pi imes\eta imes 0$ ، حيث $k=30 imes 10^{-3}$ ويمثل لزوجة الزيت .
 - 2 _ 1 أتبث أن تعبير المعادلة التفاضلية التي تحققها السرعة $\, {
 m v} \,$ خلال حركة الكرية يكتب على الشكل التالي :

$$\frac{dv}{dt} + \frac{k}{m} \times v = g \left(1 - \frac{\rho_h}{\rho_p} \right)$$

- 2 _ 2 كيف تعلل أن الكرية تأخذ قيمة حدية خلال سقوطها في الزيت ؟
- B و A تحددا الثابتتين $v = A \left(1 e^{-Bt}\right)$: بين أن حل المعادلة التفاضلية يكتب على الشكل الشكل التالي
 - $v_{\ell} = 30 \text{mm/s}$ بعد 40 ms تبقى قيمة سرعة الكرية
 - 3 ــ 1 أجرد القوى المطبقة على الكرية في هذه الحالة
 - 3 ــ 2 ما هي رتبة القدر للزمن المميز لهذه الحركة ؟

التمرين 4 استعمال طريقة أولير

 $(\rho' < \rho)$ بدون سرعة بدئية في مائع كتلته الحجمية ρ بدون سرعة بدئية وي مائع كتلته الحجمية V

تعبير متجهة قوة الاحتكاك المائع v ، بحيث أن v سرعة الكرية في المائع خلال حركتها الرأسية في المائع نوجه المحور الرأسي v موجه نحو الأسفل .

- 1 ـ حدد منحي حركة الكرية
- 2 ــ بين أن المعادلة التفاضلية لحركة الكرية تكتب على الشكل التالي :

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = \alpha \times \mathbf{v}^2 + \beta$$

3 ـ لحل هذه المعادلة يمكن استعمال طريقة أولير ، ذكر بمبدأ هذه العملية ـ

4 ـ خلال حصة تجريبية ـ توصل التلاميذ إلى النتائج التالية : $\alpha = -3,00 \mathrm{m}^{-1}$ و $\beta = 10,0 \mathrm{m/s}^2$ والجدول أسفله

t(s)	0	0,040	0,080	0,120	0,160	0,200	0,240
v(m/s)	0,000	0,400	0,781		1,360	1,538	1,654
$a(m/s^2)$	10			6,319	4,448	2,901	1,789

4 ــ 1 أتمم الجدول أعلاه

4 ـ 2 ما قيمة السرعة الحدية ؟

التمرين 5 : السقوط الرأسي لجسم صلب (Bac 2010)

يخضع كل جسـم صلب مغموء في مائع إلى دافعة أرخميدس ، وإذا كان هذا الجسـم في حركة إزاحة داخل المائع فإنه يخضع كذلك إلى قوة احتكاك مائع .

يهدف هذا التمرين إلى دراسة تطور سرعة كرتين (a) و (b) من الزجاج متجانستين

ليس لهما نفس الشعاع ، توجدان في حركو إزاحة داخل زيت بسرعة نسبيا صغيرة .

معطیات :

: $\rho = 2600 \text{kg/m}^3$: الكتلة الحجمية للزجاج

 $\rho_{\rm 0} = 970 {
m kg} \, / \, {
m m}^3$: الكتلة الحجمية للزيت

 $\eta = 8,00 \times 10^{-2} \, \text{N.m}^{-2} \, \text{.s}$: لزوجة الزيت

: $g = 9.81 \text{m/s}^2$: تسارع الثقالة

$$V = \frac{4}{3}\pi r^3$$
: r تعبیر حجم کریة شعاعها

نحرر ، عند اللحظة t=0 ، الكريتين (a) و (b) عند سطح الزيت الموجود في

أنبوب شـفاف أسطوِاني رأسـي .

ارتفاع الزيت في الأنبوب هو H = 1,00m الشكل ال

1 _ دراسة حركة الكرية (a) _

ندرس حركة الكرية في معلم $(0,ec{i})$ المرتبط بالأرض . تخضع الكرية أثناء حركتها

داخل الزيت إلى :

 $\vec{\mathbf{F}} = -\mathbf{\rho}_0.\mathbf{V.g.i}$ دافعة أرخميدس_

ي سرعة الكرية ؛ $\vec{\mathbf{f}} = -6\pi.\eta.\mathbf{r.v.i}$ عسرعة الكرية ؛

. $\vec{P} = m\vec{g}$ وزنها

نرمز للزمن المييز لحركة الكرية (a) ب τ ؛ ونعتبر أن سرعة الكرية تبلغ القيمة الحدية

. 5 au بعد تمام المدة الزمنية au

لحركة الكرية (a) مع تحديد تعبير الثابتتين لطاحلية (a) لحركة الكرية (a) لحركة الكرية الثابتتين

. r = 0.25cm علما أن τ علما أن τ

. (a) للكرية ${\bf v}_{\ell}$ الحدية السرعة السرعة الحدية ${\bf 2} = 1$

2 ـ دراسة مقارنة لحركتي الكريتين (a) و (2

 $\mathbf{r'} = 2\mathbf{r}$ هو (b) شعاع الكرية

2 ـ 1 حدد ، معللا جوابك ، الكرية التي ستستغرق أطول مدة زمنية لتبلغ سرعتها الحدية .

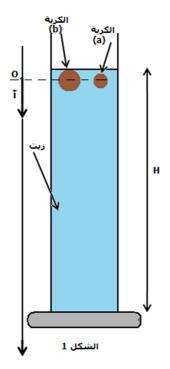
2 _ 2 خلال النظام الانتقالي تقطع:

 $d_1 = 5,00$ cm المسافة (a) الكرية .

ـ الكرية (b) المسافة __

. ${f H}$ نهمل شعاعي الكرتين ${f r}$ و ${f r}$ أمام ارتفاع الزيت

احسب المدة الزمنية الفاصلة بين وصول الكريتين (a) و (b) إلى قعر الأنبوب .



(1)

(2)

(Bac 2008) 6 التمرين

بهدف هذا التمرين إلى نمذجة قوة الاحتكاك المائع المطبقة من طرف الغليسيرول على جسم صلب وذلك بدراسة حركة السقوط الرأسـي لكلة فلزية كتلتها m وشعاعها r داخل الغليسيرول .

معطیات:

$$V = \frac{4}{3}\pi r^3$$
 : حجم الكلة : $r = 1$ cm : شعاع الكلة .

ـ الكتلة الحجمية:

 $\rho_1 = 2,7.10^3 \, \text{kg} \, / \, \text{m}^3$: للفلز الذي تتكون منه الكلة

 $\rho_2 = 1,26.10^3 \, \text{kg} \, / \, \text{m}^3$: الغليسيرول

 $g = 9.81 \text{m/s}^2$: تسارع الثقالة

نذكر أن شدة دافعة أرخميدس المطبقة على الكلة المغمورة كليا في الغليسيرول هي $F = \rho_2 V g$.

الغليسيرول ب $\vec{f} = -9\pi r v^n \vec{k}$ حيث n عدد صحيح و v سرعة مركز قصور الكلة .

عند لحظة نعتبرها أصلا للتواريخ $(t_0=0)$ ، نحرر الكلة بدون سرعة بدئية من نقطة 0 أصل المحور الرأسي $(0,ec{k})$ الموجه نحو الأسـفل ، فتتم حركتها داخل الغليسـيرول الموجود في إناء زجاجي ، على مرحلتين :

. مرحلة النظام البدئي بين لحظتين $t_{_0}$ و $t_{_1}$ حيث تتزايد سرعة الكلة : (1)

. v_{c} عرحلة النظام الدائم انطلاقا من اللحظة t_{1} حيث تأخذ سرعة الكلة قيمة حدية ثابتة v_{c} : (2)

يمكن الجهاز المكون من ميقت وخليتين (C_1) و (C_2) من قياس المدة الزمنية Δt التي تستغرقها الكلة لقطع المسافة $d=20 {
m cm}$

. $\Delta t = 956$ ms علما أن v_{ν} علما أن $\Delta t = 956$ ms علما أن

2 ــ بتطبيق القانون الثاني لنيوتن ، بين أن المعادلة التفاضلية التي تحققها السرعة $\, v \,$ لمركز قصور الكلة داخل السائل تكتب علم الشركا $\, v \,$

$$B=g\left(\frac{\rho_1-\rho_2}{\rho_1}\right) \text{ g } A=\frac{27}{4\rho_1r^2} \text{ as } \frac{dv}{dt}+Av^n=B$$

 $_{ ext{. }}$. $_{ ext{g,r,}
ho_{_{1}},
ho_{_{2}}}$ بدلالة $_{ ext{v}_{\ell}}$ بدلالة $_{ ext{v}_{\ell}}$. $_{ ext{zert}}$. $_{ ext{g,r,}
ho_{_{1}},
ho_{_{2}}}$ بدلالة $_{ ext{v}_{\ell}}$

4 _ استنتج العدد n

VI _ السقوط الرأسي الحر .

1 ــ تعریف

السقوط الحر لجسم صلب هو حركة مركز القصور هذا الجسم في مرجع أرضي عندما يخضع الجسم لقوة الثقالة فقط . نظريا يكون السقوط حرا إذا تم قي الفراغ ، ويمكن اعتبار سقوط جسم في الهواء حرا إذا كانت كثافته عالية وشكله انسيابي ، ومنطقة سقوطه محدودة في مجال الثقالة .

. متجهة التسارع $a_{\scriptscriptstyle G}$ لمركز القصور -2

نعتبر السقوط الحر لجسم صلب في مجال الثقالة وفي مرجع أرضي . أي أن الجسم يوجد تأثير وزنه فقط .

 $\vec{\mathrm{g}}=\vec{\mathrm{a}}_{\mathrm{G}}$ نطبق القانون الثاني لنيوتن : $\vec{\mathrm{P}}=\mathrm{m.g}=\mathrm{m}\vec{\mathrm{a}}_{\mathrm{G}}$ أي أن

3 _ المعادلة الزمنية للحركة

في المعلم (\vec{Q} , الموجه نحو الأسفل نسقط العلاقة فنحصل على : $a_z = g \Rightarrow \frac{dv_z}{dt} = g \Rightarrow v_z = gt + C$ نحدد الثابتة \vec{Q} بالشروط

. البدئية . نأحذ عند اللحظة $\mathbf{c}=0$ أن $\mathbf{c}=0$ البدئية . أي أي أي أي أي أي أي أي أي $\mathbf{c}=0$ ونستنتج أن سرعة G دالة زمنية خطية .

بنفس الطريقة نبحث عن (z(t

وبالتالي فإن z(0)=z₀=0 نا t=0 أن t=0 وبالتالي فإن $v_z=\frac{\mathrm{d}z}{\mathrm{d}t}=\mathrm{gt}$ ، نحدد كذلك الثابتة ' $v_z=\frac{\mathrm{d}z}{\mathrm{d}t}=\mathrm{gt}$

C'=0 أي أن المعادلة الزمنية لحركة السقوط الحر للجسم الصلب بدون سرعة بدئية ومن النقطة O تم اختيارها كأصل معلم

. $z(t) = \frac{1}{2}gt^2$: الزمن هي

وهذه المعادلة نعممها بالنسبة لجميع الأجسام الصلبة التي تطلق بدون سرعة بدئية في سقوط حر أي أنها تسقط بنفس الحركة ، **حركة مستقيمية متغيرة بانتظام** .

التمرين 1:

محوره $\mathcal{R}(\mathrm{O}, ec{\mathrm{i}}, ec{\mathrm{j}}, ec{\mathrm{k}})$ محدود معلم متعامد وممنظم معتبر السقوط حرا ونقوم بدراسته في معلم متعامد وممنظم $\mathcal{R}(\mathrm{O}, ec{\mathrm{i}}, ec{\mathrm{j}}, ec{\mathrm{k}})$ محوره $ec{\mathrm{i}}$

. رأسي وموجه نحو الأسفل (O, \vec{k})

1 ـ ما طبيعة مسار G مركز قصور الكرة ؟

2 ـ أجرد القوى المطبقة على الكرة أثناء سقوطها . ما القوى التي نهملها أمام وزن الجسم ؟ وما هي الشروط لكي نقوم بهذا الإهمال ؟

3 ـ عبر بدلالة الزمن t عن الأنسوب z للنقطة G .

4 _ أحسب السرعة التي ستصل بها الكرة إلى الأرض . نعطي h=2m .

II ــ السرعة البدئية في اللحظة t=0 لمركز قصور الكرة أرسلت رأسيا نحو الأعلى تساوي v₀=15,0m/s

1 ـ اعط تعبير الإحداثية v لمتجهة السرعة لمركز القصور الكرة لمحور رأسي (O, \vec{k}) موجه نحو الأعلى للمعلم المتعامد $\mathcal{R}(O, \vec{i}, \vec{j}, \vec{k})$.

. واحسب قيمته $z_{\rm M}$ تاريخ اللحظة الموافقة للارتفاع الأقصى $z_{\rm M}$ للنقطة $z_{\rm M}$ واحسب قيمته $z_{\rm M}$

3 _ أحسب قيمة Z_M .

التمرين 2 : تحديد عمق بئر

لتحديد العمق $\, \, H \,$ لبئر ، نسقط رأسيا حجرة من فتحة البئر بدون سرعة بدئية . المدة الزمنية المستغرقة بين لحظة انطلاق سقوط الحجرة و اللحطة التي سمع فيها اصطدام الحجرة بالقعر البئر هي $\, \Delta t = 4,50s \,$

 $g = 9,80 \text{m/s}^2$ و $V_{\text{son}} = 330 \text{m/s}$ نعطي سرعة الصوت في الهواء

بتطبيق القانون الثاني لنيوتن بين أن تعبير العمق H يكتب على الشكل التالي:

$$H = \frac{V_{son}^2}{g} \Biggl(1 + \frac{g\Delta t}{V_{son}} - \sqrt{1 + \frac{2g\Delta t}{V_{son}}} \Biggr)$$

أحسب العمق H للبئر .