الدرة وميكانيك نيوتن

الذرة ومكانيك نيوتن Atome et mecanique de Newton خاص بالعلوم الرياضية والعلوم التجريبية مسلك العلوم الفيزيائية

I _ حدود میکانیك نیوتن

1 _ قانون نيوتن وقانون كولم

أ ــ قانون نيوتن : التأثير البيني التجاذبي

جسمان نقطیان A کتلته m_A و B کتلته m_B یطبق الواحد منهما علی الآخر قوة تجاذب کوني اتجاهها هو المستقیم المار من A و B ،

 $F_{A/B} = F_{B/A} = G rac{m_A.m_B}{ig(ABig)^2}$: ومنحاهما نحو الجسم المؤثر ، وشدتهما تساوي

 ${
m G} = 6,67.10^{-11} \, {
m N.m^2.kg^{-2}}$. بحيث G هي ثابتة التجاذب الكوني

$$\vec{F}_{A/B} = -G \frac{m_A m_B}{(AB)^2} \vec{u}_{AB}$$

ب ـ قانون کلوم

جسمان نقطیان A شحنته $q_{\rm B}$ و B شحنته $q_{\rm B}$ یطبق کلاهما علی الآخر قوة تجاذب أو تنافر اتجاهها هو المستقیم المار من A و B ، ومنحاهما یتعلق بإشارتي A و B ، وشدتهما

$$k=rac{1}{4\pi\epsilon_0}$$
 تساوي : $F_{A/B}=F_{B/A}=krac{q_A.q_B}{\left(AB
ight)^2}$: تساوي

 $k = 9.10^9 \, \text{N.m}^2.\text{C}^{-2}$ حيث \mathcal{E}_0 هي ثابتة العزل في الفراغ

$$\vec{F}_{A/B} = k \frac{q_A \cdot q_B}{(AB)^2} \vec{u}_{AB}$$

ملحوظة : التأثير البيني التجاذبي في الذرة مهمل أمام التأثير البيني الكهرساكن .

مثلا في حالة ذرة الهيدروجين لدينا:

$$\frac{F_g}{F_e} = \frac{Gm_e.m_p}{k.e^2} \approx 4,4.10^{-40}$$

2 _ النموذج الكوكبي للذرة

باستعمال المماثلة بين قوى التأثير البيني التجاذبي الكوني ، وقوى البيني الكهرساكن ، اقترح العالم روذرفورد في مطلع القرن العشرين " نموذجا كوكبيا " للذرة حيث نمذج النواة بكوكب ما ونمذج الإلكترونات بأقمار هذا لكوكب ز ومثلما تتحكم قوى التأثير البيني التجاذبي في حركة الأقمار حول الكوكب ، تتحكم قوى التأثير البيني الكهرساكن في حركة الإلكترونات حول النواة .

3 ـ حدود میکانیك نیوتن

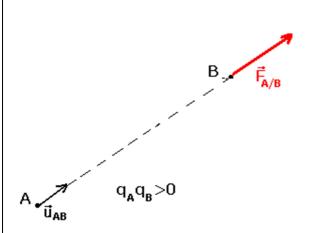
بالنسبة لمجموعة كوكبية (أرض ــ قمر اصطناعي) مثلا ، تسمح ميكانيك نيوتن بالتنبؤ بإمكانية وضع القمر الاصطناعي في مدار حول الأرض ، حيث يتعلق ارتفاعه عنها بالشروط البدئية لإطلاقه . وبما أنه يمكن تغيير تلك الشروط البدئية ، فإن شعاع مدار القمر الاصطناعي (باعتباره دائريا) يمكنه أن يأخذ جميع القيم الممكنة .

باعتبار ذرة الهيدروجين وتخيلنا أن إلكترون الذرة في حركة دائرية منتظمة حول النواة ، فإنه حسب ميكانيك نيوتن يمكن لشعاع مدار الإلكترون أن يأخذ جميع القيم الممكنة ، وبالتالي فإن ذرتي هيدروجين سيكون لهما حجمان مختلفان حسب شعاع المدار وهذا غير صحيح لأن ذرتي هيدروجين لهما نفس الحجم وبصفة عامة جميع ذرات الهيدروجين لها نفس المميزات . وهذا ما يجعل مكيانيك نيوتن تعجز عن تفسيره .

لايمكن لميكانيك نيوتن أن تفسر الظواهر الفيزيائية التي تحدث على مستوى الذرات أو الجزيئات .

من بين هذه الظواهر الفيزيائية ، التبادلات الطاقية بي المادة وإشعاع ضوئي والتي تبرزها أطياف الذرات

II _ تكمية التبادلات الطاقية


ىحدث تبادل الطاقة

ـ عند اصطدام ذرة بدقيقة مادية

ـ عندما يحدث تأثير بيني بين الذرة وإشعاع ضوئي .

سنة 1900م وضع الفيزيائي الألماني ماكس بلانك فرضية : المادة والضوء لا يمكنهما أن يتبادلا الطاقة إلا بكميات منفصلة تسمى **كمات الطاقة** .

 $\begin{array}{c} B \\ \vec{F}_{A/B} \end{array}$

Allal mahdade Page 1

الدرة وميكانيك نيوتن

الطاقة المتبادلة $E_{\rm ech}$ بين المادة وإشعاع ضوئي لا يمكنها أن تأخذ إلا قيما محددة ومنفصلة ، نقول أن هذه الطاقة المتبادلة مكماة .

 $\Delta E = E_2 - E_1$ أي أن E_2 أي أن ألطاقة ، فإن الطاقة المتبادلة من طرف ذرة تساوي تغير طاقتها بين قيمتين E_1 وحسب مبدأ انحفاظ الطاقة ، فإن الطاقة المتبادلة من طرف ذرة تساوي تغير طاقتها بين قيمتين E_1 الموذج الفوتون

طور إنشتاين فرضية ماكس بلانك والتي تقول أن الضوء هو عبارة عن موجات كهرمغنطيسية يحمل طاقة على شكل كمات الطاقة ، وذلك بإثبات أن كمات الطاقة هاته تحملها دقائق تسمى **بالفوتونات .**

ما هو الفوتون ؟

. $c = 3,00.10^8 \, \mathrm{m/s}$: الفوتون دقيقة ليست لها كتلة ، وغير مشحونة ، تنتقل في الفراغ بسرعة الضوء

. تتكون موجة كهرمغنطيسية ترددها $\, v \,$ ، وطول موجتها في الفراغ $\, \lambda \,$ من فوتونات

. $E = h.v = h\frac{c}{\lambda}$: طاقة كل فوتون

. J و طاقة الفوتون ب E و (J.s) و الموجة ب المتر m و المتر m و الموجة ب الموجة ب ν

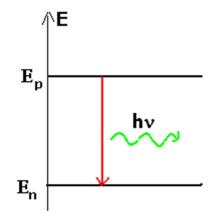
 $1 \mathrm{eV} = 1,60.10^{-19} \mathrm{J}$: للتعبير عن طاقة الفوتون نستعمل غالبا الإلكترون ـ فولط

تمرين تطبيقي :

أحسب بالجول ، ثم بالإلكترون فولط ، طاقة فوتون مقرون بلإشعاع الأحمر لطيف الهيدروجين طول موجته يساوي 657nm .

 $h = 6,626.10^{-34} \, \mathrm{J.s}$ و ثابتة بلانك $c = 3,00.10^8 \, \mathrm{m/s}$: نعطي يسرعة الضوء في الفراغ

 $E = h.v = \frac{h.c}{\lambda}$: الجواب


$$\mathrm{E} = \frac{6,626.10^{-34} \times 3.10^8}{656.10^{-9}} = 3,03.10^{-19}\,\mathrm{J}$$
 : حساب طاقة الفوتون بالجول

حساب طاقة الفوتون ب E = 1,89eV : eV

2 ـ موضوعات بوهر

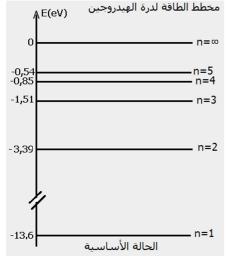
تبين الدراسة التجريبية لطيف الانبعاث لذرة الهيدروجين في المجال المرئي أنه يتكون من عدة حزات ملونة توافق كل منها إشعاعا معينا أحادي اللون ، وهو يتكون من أربع حزات طول موجاتها هو كالتالي :

. $\lambda_4=657 nm$ g $\lambda_3=487 nm$ g $\lambda_2=435 nm$ g $\lambda_1=411 nm$

لتفسير هذه الظاهرة وضع العالم الفيزيائي الدنماركي نيلس بوهر موضوعات تحمل اسمه :

- * تغيرات الطاقة لذرة تغيرات مكماة .
- * لا يمكن أن توجد الذرة إلا في حالات طاقية معينة ، وتتميز كل حالة طاقية بمستوى طاقي .

يتم انبعاث فوتون تردده u عندما تنتقل الذرة من مستوى طاقي ${
m E}_{\scriptscriptstyle {
m D}}$ إلى مستوى *


 $E_p - E_n = hv$: طاقي E_n أقل بحيث

III ـ تكمية مستويات الطاقة .

1 ـ تكمية مستويات الطاقة في الذرات

النموذج الذي وضعه بوهر يتناسب والأفكار الجديدة للتكمية ، يتمثل هذا النموذج في كون طاقة الذرة مكماة أي لا تأخذ سوى بعض القيم المنفصلة والمحددة تسمى مستويات الطاقة . أي أن كل مستوى طاقي له طاقة معينة ونميزها بعدد n يسمى بالعدد الكمي ، والذي يأخذ الأعداد 1 و 2 و n

 $_{\rm n}$ مستوى الطاقة بالنسبة للعدد الكمي $_{\rm n}$ $_{\rm n}$ يسمى المستوى الأساسي وهو يوافق المستوى ذا الطاقة الأصغر (الحالة المستقرة للذرة)

الدرة وميكانيك نيوتن

- _ مستويات الطاقة ذات العدد الكمي n>1 توافق المستويات المثارة .
- $_-$ المستوى الطاقي دو العدد الكمي $_{
 m m}$ = $_{
 m m}$ يوافق الطاقة $_{
 m m}$ = $_{
 m m}$ حيث الإلكترون غير مرتبط بالنواة . إن هذا الاصطلاح يستوجب أن تكون لكل المستوبات الطاقية تأخري طاقة سالية .

مخطط مستويات الطاقة لذرة الهيدروجين .

- في غياب أي اضطراب خارجي ، إذا كانت الحالة الأساسية لذرة هي ا
 - حالتها البدئية ، فإن الذرة تبقى في هذه الحالة .
- عندما تكتسب ذرة طاقة خارجية ، فإنها تنتقل من حالتها الأساسية إلى إحدى الحالات المثارة والتي تكون في الغالب غير مستقرة ، لكن سرعان ما تعود إلى إحدى حالاتها ذات مستوى طاقي أقل ، وذلك بفقدان طاقة تكون مكماة .

الانتقال هو المرور من حالة إلى أخرى ذات مستوى طاقي أكبر

(إثارة) أو ذات مستوى طاقي أقل (فقدان الاثارة)

تمرین تطبیقی :

باستعمال مخطط مستويات الطاقة لذرة الهيدروجين:

- 1 ـ احسب الطاقة المفقودة خلال انتقال ذرة الهيدروجين من الحالة المثارة الرابعة إلى حالتها الأساسية .
 - 2 ـ ما هي أكبر قيمة ممكنة لطاقة الانتقال بين حالتين متتاليتين ؟

الجواب:

1 ـ الطاقة المفقودة خلال انتقال الذرة من الحالة المثارة الرابعة إلى الحالة الأساسية :

$$E_4 - E_1 = -0.85 - (-13.6) = 12,75eV$$

2 ــ الحالتان المتتاليتان اللتان تبعدان أكثر عن بعضهما البعض هما الحالة الأساسية والحالة المثارة الأولى : $E_2 - E_1 = 10,2eV$

2 ــ تكمية مستويات الطاقة في الجزيئات

تتكون الجزيئات من ذرات في تأثير بيني ، مما يكثر من عدد مستويات الطاقة ويوسعها . فطاقة الجزيئة مكماة أيضا ، وهي تتعلق بالإلكترونات ، وباهتزازات الجزيئة حول مركز الكتلة ، وبدورانها .

3 ـ تكمية مستويات الطاقة في النوي .

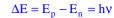
إن طاقة النواة مكماة كذلك ، بحيث أن النواة يمكنها أن تنتقل من مستوى طاقي إلى آخر ، مثل الذرة ، وذلك بفقدان طاقة أو باكتسابها . كما يمكن للنواة أن تثار بفعل اصطدامها مع دقيقة مادية عالية الطاقة

تتوفر الذرات والجزيئات والنوى على مستويات الطاقة مكماة .

عندما تتبادل هذه المجموعات طاقة مع الوسط الخارجي ، فإنها تنتقل من مستوى طاقي $\,E_{\scriptscriptstyle P}\,$ إلى مستوى طاقي $\,$

 $E_{\rm P}>E_{\rm n}$ الطاقة المتبادلة تحكمها علاقة بوهر : $\Delta E=E_{\rm p}-E_{\rm n}$ بحيت أن

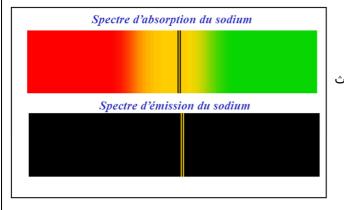
VI _ تطبيقات على الأطياف .


تعريف بطيف ضوء

نسمي طيف ضوء مجموع الإشعاعات التي يتكون منها هذا الضوء ، ويتميز كل إشعاع منها بطول الموجة في الفراغ .

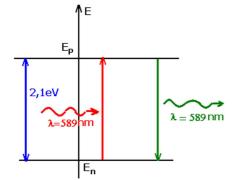
1 ــ أطياف الذرات

http://www.unice.fr/lasi/pagesperso /golebiowski/cours.htm


تمثل الوثيقة أعلاه طيف حزات الامتصاص وطيف حزات الانبعاث لذرة الصوديوم ويلاحظ أن الحزات المظلمة تحتل نفس مواضع حزات الانبعاث عندما تنتقل ذرة من مستوى طاقي $\mathrm{E_{p}}$ إلى آخر ذي طاقة $\mathrm{E_{n}}$ أقل فإنها تفقد طاقة تبعثها على شكل إشعاع تردده u ، بحيث أن

- . كلما كان الفرق ΔE كبيرا كلما كان التردد u مهما u
- * ترددات الإشعاعات المنبعثة تحددها مستويات الطاقة ؛ ففي طيف الانبعاث الذري ، كل حزة أحادية اللون (أحادية طول الموجة) توافق انتقالا بين مستويين للطاقة .

وعند إضاءة ذرات بواسطة ضوء أحادي طول الموجة في الفراغ تردده $\, ext{v} \,$ ، تنتقل الذرة من مستوى طاقي $\, ext{E}_{ ext{n}} \,$ إلى مستوى طاقي $hv = E_p - E_n$ مع امتصاص الإشعاع إذا كانت (n < p) E_p

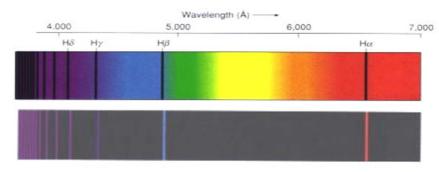

Allal mahdade Page 3

<mark>الدرة وميكانيك نيوتن</mark>

إذا كانت hv أصغر من أي فرق ممكن بين مستويات الطاقة ، فإن الإشعاع بعبر

المادة دون إحداث أي اضطراب .

عندما تنتقل ذرة من مستوى طاقي E_n إلى مستوى طاقي أكبر فإنها تمتص . $\Delta E = E_p - E_n = hv$ إشعاعا تردده ν بحيث أن



مثال نشاط تجريبي : دراسة طيف حزات الهيدروجين

تجربة: نستعمل حبابة تحتوي على غاز الهيدروجين تحت ضغط ضعيف تتم إثارته بالتفريغ الكهربائي . فينبعث منه ضوءا الذي يكون طيف الانبعاث لذرة الهيدروجين . والذي يمكن معاينته بواسطة مطياف . نلاحظ :

ـ يحتوي على حزات طيفية أهمها الأربع التالية :

487nm أزرق 435nm نيلى 411nm بنفسجى

Comparaison des spectres d'émission et d'absorption de l'hydrogène

www2.ac-lyon.fr/lyc69/herriot/SPC/2nde/cours/PHYSIQUE/chapP4.pdf

في سنة 1908 م اقترح ريتز علاقة رياضية تمكن من حساب أطوال الموجة لطيف الانبعاث لذرة الهيدروجين في المجالات المرئي ، وفوق البنفسجي ، وتحت الأحمر ، وتربط هذه العلاقة أطوال الموجة $\lambda_{
m np}$ بعددين طبيعيين m n و m p حيث m n=1 أو m n=2

$$R_{H}=1,09737320.10^{7}\,\mathrm{m}^{-1}$$
 : Rhydberg ثابتة ريدبيرك R_{H} ثابتة ريدبيرك $\frac{1}{\lambda_{\mathrm{np}}}=R_{H}\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{\mathrm{p}^{2}}\right)$ (1) : هو $\mathrm{p}>\mathrm{n}$ وهي $\mathrm{m}=3$

انطلاقا من قيمة معينة لعدد n يمكن حساب متسلسلة من الحزات وذلك بتغيير العدد p .

_ متسلسلة بالمير توافق ho = 1 وتعطي اطوال الموجة لأربع حزات مرئية توافق كل حزة قيمة معينة لعدد ho .

p > 3 و n = 3 و متسلسلة باشين نحصل عليها بالنسية للعدد

p>1 و n=1 متسلسلة ليمان نحصل عليه بالنسبة للعدد

p > 4 و n = 4 و متسلسلة براكبت نحصل عليها بالنسبة للعدد

في سنة 1913 م اقترع الفيزيائي بوهر نظرية تمكن من تفسير طيف حزات ذرة الهيدروجين ، حيث توصل إلى كون طاقة ذرة هيدروجين معزولة هي : $\mathrm{E_n} = -\frac{13.6}{r^2}$ (eV) : هيدروجين معزولة هي : في عدد الكمي الرئيسي . يستخلص من هذا

أن طاقة ذرة الهيدروجين مكماة بحيث لا تأخذ إلا قيما محددة ، يميزها العدد n .

ي تحقق من صحة العلاقة (1)بحساب أطوال الموجة للحزات المرئية لمتسلسلة بالمير ، ثم قارن القيم المحصلة مع معطيات 1الوثىقة .

$$p>2$$
 نستعمل العلاقة : $\frac{1}{\lambda_{np}}=R_{H}\Biggl(\frac{1}{n^{2}}-\frac{1}{p^{2}}\Biggr)$ $\Rightarrow \lambda_{np}=\frac{1}{R_{H}}\Biggl(\frac{(np)^{2}}{p^{2}-n^{2}}\Biggr)$: نستعمل العلاقة

$$\lambda_{\rm np} = \frac{1}{R_{\rm H}} \left(\frac{({\rm np})^2}{{\rm p}^2 - {\rm n}^2} \right) = \frac{1}{1,09737320.10^7} \times \left(\frac{36}{9 - 4} \right) = 656,1{\rm nm}$$
 نأخذ $p = 3$

$$\lambda_{26}=410$$
nm و $\lambda_{25}=434$ nm و $\lambda_{24}=486$ nm $\lambda_{26}=436$

Allal mahdade Page 4

<mark>الدرة وميكانيك نيوتن</mark>

. أ _ أحسب الترددات ν_{np} للحزات الأربع الأولى لمتسلسلات السالفة الذكر ν_{np}

 v_{nn} حساب الترددات

.....
$$v_{23} = \frac{c}{\lambda_{23}} = 4,57 \times 10^{14} \,\text{Hz}$$

ب _ أنقل قيم الترددات ν_{np} على محور رأسي للترددات ، ممثلا كل حزة بخط أفقي ، ومقرنا بكل حزة العددين p و p الموافقين ν_{np} يستعمل السلم 1 0 0 0 الموافقين

 $[E_p-E_n]$ التي توافق التبادلات الطاقية مع الوسط الخارجي $[E_p-E_n]$ التي توافق التبادلات الطاقية مع الوسط الخارجي هي تغيرات مكماة أيضا .

. $\left(\mathrm{E_p} - \mathrm{E_n} \right)$ ب _ أثبت العلاقة التي تمكن من حساب الفرق

2 ــ أطياف الجزيئات :

يتكون طيف الامتصاص لجزيئة من حزات ومن مجالات الامتصاص ، حيث تنخفض الشدة الضوئية لإشعاع ممتص فجأة ، حيث يوافق كل قمة مقلوبة تردد الإشعاع الممتص .

رتبة قدر إشعاع ممتص هي $10^{11} {
m Hz}$ بالنسبة لجزيئة ، مما يدل على أن مجالات الامتصاص توجد غالبا في المجال تحت الأحمر ، وبالتالي فهي غير مرئية ، ومن تم ينبغي تسجيلها باستعمال مكثفات ذات حساسية لهذه الإشعاعات .

إن تحليل طيف الامتصاص لجزيئة يمكن من التعرف على هذه الجزيئة ، كونه يقدم معلومات عن المجموعة الوظيفية وعن الروابط التي تحتوي عليها الجزيئة .

تمرین تطبیقی :

يمثل المبيان جانبه طيف إمتصاص للبوتانون . يتميز هذا الامتصاص بعدد الموجة $\sigma = 1/\lambda ({
m cm}^{-1})$ و معامل الانتقال نعبر عنه

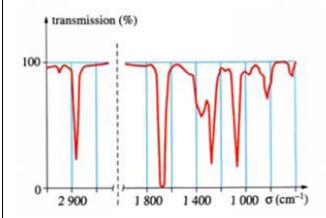
بالنسبة المئوية للطاقة المنقولة من طرف البوتانون

1 ـ أكتب الصيغة نصف المنشورة للبوتانون

2 _ لمادا يعتبر هذا الطيف ، طيف امتصاص ؟

C-H بوجود قمة الامتصاص الموافقة لعدد C-H بوجود قمة الامتصاص الموافقة لعدد الموجة $2900 {
m cm}^{-1}$

1 - 1 أحسب طول الموجة ب 1 - 1 الموافق لهذه المجموعة , إلى أي مجال ضوئي ينتمي هذا الإشعاع ؟


2 _ 2 أحسب ب eV الطاقة الموافقة لهذا الإشعاع .

3 ـ أطياف النوى

طاقة النواة هي أيضا مكماة ، ففي النشاط الإشعاعي ، تكون النوى الناتجة عن تفتت إشعاعي نوى مثارة . فقدان الإثارة لهذه النوى يصاحبه انبعاث فوتونات ذات طاقة عالية (إشعاعية النشاط γ)

تميز النوى الباعثة .

رتبة قدر تغيرات الطاقة في النواة تناهز الميغا إلكترون ـ فولط (MeV) .

Allal mahdade Page 5