La dérivation A.KARMIM

LA DERIVATION

I) RAPPELLES

1) Activités:

Activité 1 :

- 1- Montrer en utilisant la définition que la fonction $f(x) = 2x^2 + x 3$ est dérivable en a = 2.
- 2- Montrer en utilisant la définition que la fonction $g(x) = \sqrt{x^2 + 1} + x$ est dérivable en a = 1
- 3- Montrer en utilisant la définition que la fonction $h(x) = \sqrt[3]{2x^2 + 3}$ est dérivable en a = -1.
- 4- La fonction $u(x) = \sqrt{x^2 9}$ est-elle dérivable en a = 3.

Activité 2 :

Etudier la dérivabilité de la fonction $\begin{cases} f(x) = 2x^2 + x & \text{si } x \le 1 \\ f(x) = \frac{4x + 2}{x + 1} & \text{si } x > 1 \end{cases} \text{ en } a = 1$

Activité 3:

- 1- Etudier la dérivabilité de la fonction $g(x) = |2x^2 8| + x + 1$ en a = -2.
- 2- Déterminer l'équation de la tangente en A(0, g(0))
- 3- Déterminer les équations des demi-tangentes au point B(-2, g(-2))
- 4- Présenter les 3 tangentes.

2) Rappelles.

2.1 Définitions et propriété de base

Définition:

Soit f une fonction numérique définie sur un intervalle **ouvert de centre** a.

On dit que f est dérivable en a si la limite $\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$ existe et est finie. Dans ce cas on appellera cette limite le nombre dérivé de la fonction f en a et se note f'(a).

Remarque:

Si f est dérivable en a et $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ On pose : h = x - a si x end vers a alors a tend vers a et on obtient a et a end vers a alors a end vers a

Application:

Calculer le nombre dérivé de $f(x) = x^3 + x$ en a = 1 en utilisant la deuxième formulation de la dérivation

Définition:

- Soit f une fonction définie sur un intervalle de la forme [a, a+r[où r>0 On dit que f est dérivable à droite de a si la limite $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a}$ existe et est finie, dans ce cas on appelle cette limite ; le nombre dérivé de la fonction f à droite de a et on la note : $f_a'(a)$.
- Soit f une fonction définie sur un intervalle de la forme]a-r,a]où r>0On dit que f est dérivable à gauche de a si la limite $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a}$ existe et est finie, dans ce cas on appelle cette limite ; le nombre dérivé de la fonction f à gauche de a et on la note : $f'_q(a)$.

Théorème:

Soit f une fonction définie sur un intervalle ouvert de centre a.

f est dérivable en a si et seleument si elle dérivable à droite et à gauche de a et $f_d'(a) = f_g'(a)$

2.2 Fonction affine tangente

Soit f une fonction dérivable en a et f'(a) son nombre dérivé en a.

Posons:
$$\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} - f'(a), & x \neq a \\ 0, & x = a \end{cases}$$

On a :
$$(x - a)\varphi(x) = -f'(a)(x - a) + f(x) - f(a)$$
 et par suite :

$$f(x) = f'(a)(x - a) + f(a) + (x - a)\varphi(x)$$

Posons :
$$u(x) = f'(a)(x-a) + f(a)$$
 on aura : $f(x) = u(x) + (x-a)\varphi(x)$

La fonction u est une fonction affine et s'appelle la fonction affine tangente en a.

Propriété:

Soit f une fonction dérivable en $a.\ f$ admet une fonction affine tangente en a de la forme :

$$u(x) = f'(a)(x - a) + f(a)$$

Remarques:

- La fonction affine tangente en a d'une fonction dérivable en a est une approximation de f au voisinage de a
 - On peut écrire alors : $f(x) \sim f'(a)(x-a) + f(a)$
- Si on pose x = a + h; on aura : $f(a + h) \sim f'(a)h + f(a)$ qui dit que si on ne connait pas f(a + h) et si h est petit, on peut" essayer de mettre " f'(a)h + f(a) a la place de f(a + h).

Exemple:

Si on veut une approximation de *sin*3, on peut prendre :

- \circ f(x) = sinx
- o $a = \pi$ (car π est l'élément le plus proche de 3 dont le sinus est conu)
- o $h = 3 \pi$ (pour avoir : $3 = \pi + h$)

On a alors $f(a)=sin\pi=0$ et $f'(a)=cos\pi=-1$ (à prouver) ce qui donne :

$$sin 3 = sin(\pi + h) \sim -1 \times (3 - \pi) = \pi - 3.$$

2.3 Interprétation géométrique :

Propriété:

Soit f une fonction dérivable en a. f admet une fonction affine tangente en a de la forme :

$$u(x) = f'(a)(x - a) + f(a)$$

Exercice:

Soit $(x) = x^2$, A(a, f(a)) un point de C_f ; T est la tangente à C_f en A. La droite T coupe respectivement (Ox) et (Oy) en M et N.

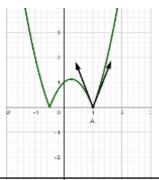
Montrer que M est le milieu de [AN].

Théorème:

- Si f est une fonction dérivable à droite de a, alors son graphe admet une demi-tangente à droite de a (T_d) d'équation : (T_d) { y = f'_d(a)(x a) + f(a) x ≥ a
 Si f est une fonction dérivable à gauche de a, alors son graphe admet une demi-tangente à gauche de
- Si f est une fonction dérivable à gauche de a, alors son graphe admet une demi-tangente à gauche de a (T_g) d'équation : T_g $\begin{cases} y = f_g'(a)(x-a) + f(a) \\ x \le a \end{cases}$

Exemple:

 $f(x) = |-2x^2 + x + 1| \text{ ; On a : } f \text{ est d\'erivable à droite de } 1 \text{ et } f'_d(1) = 3$ (à prouver) et est dérivable à gauche de 1 et $f'_g(1) = -3$ donc la courbe représentative de f admet deux demi-tangentes en A(1, f(1)). $(T_d) \begin{cases} y = 3(x-1) \\ x \geq 1 \end{cases} \text{ et } (T_g) \begin{cases} y = -3(x-1) \\ x \leq 1 \end{cases} \text{ qu'on peut représenter par : }$



2.4 Opérations sur les fonctions dérivées :

Définition:

Soit f une fonction dérivable sur un intervalle **ouvert** I. La fonction qui associe à tout élément x son nombre dérivé f'(x) s'appelle la fonction dérivée de la fonction f sur I.

Tableau des dérivées des fonctions usuelles

ivees des remedians asaches						
La fonction f	Sa fonction	Intervalles de dérivation				
	dérivée f'					
С	0	\mathbb{R}				
x	1	\mathbb{R}				
$\frac{x^2}{x^n}$	2x	\mathbb{R}				
x^n	$\frac{2x}{nx^{n-1}}$	\mathbb{R}				
\sqrt{x}	1	R*+				
	${2\sqrt{x}}$					
1	$2\sqrt{x}$ -1	\mathbb{R}^{*+} et \mathbb{R}^{*-}				
$\frac{\overline{x}}{x}$	$\overline{x^2}$					
cos	-sin	\mathbb{R}				
sin	cos	\mathbb{R}				
tanx	$1 + tan^2x$	$]\frac{-\pi}{2} + k\pi, \frac{-\pi}{2} + k\pi[, k \in \mathbb{Z}]$				

Tableau des opérations sur les fonctions dérivées

La fonction	Sa fonction dérivée
f + g	f'+g'
f.g	f'.g+g'.f
1	grad grad grad grad grad grad grad grad
g	g^2
<u>f</u>	$\underline{f'.g-g'.f}$
g	g^2
\sqrt{f}	<u>f'</u>
	$2\sqrt{f}$
f(ax+b)	af'(ax+b)

3) Dérivation et continuité :

Théorème:

Si f est une fonction dérivable en a alors elle est continue en a

Preuve:

On a :
$$f(x) = f'(a)(x - a) + f(a) + (x - a)\varphi(x)$$

Où : $\varphi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} - f'(a), & x \neq a \\ 0, & x = a \end{cases}$

Donc
$$\lim_{x \to a} f(x) = \lim_{x \to a} f'(a)(x - a) + f(a) + (x - a)\varphi(x)$$

= $f(a)$ car $\lim_{x \to a} \varphi(x) = 0$

La dérivation A.KARMIM

Donc f est continue en a.

Remarque:

La réciproque n'est pas vraie ; f(x) = |x| est continue en 0 mais pas dérivable en 0 (vérifier le)

Exercice:

Soit la fonction f définie par :

$$\begin{cases} f(x) = 2x^2 + ax + b & \text{si } x \le 1\\ f(x) = \frac{2x + a}{x + 2} & \text{si } x > 1 \end{cases}$$

- 1- Trouver une relation entre a et b afin que la fonction soit continue en 1.
- 2- Déterminer a et b pour que f soit dérivable en 1.

II) DERIVATION DE LA COMPOSITION DE DEUX FONCTIONS

Théorème:

Soient f une fonction définie sur un intervalle I et g une fonction définie sur un intervalle J telles que $f(I) \subset J$ et g une fonction définie sur un intervalle g telles que g une fonction définie sur un intervalle g telles que g une fonction définie sur un intervalle g telles que g une fonction définie sur un intervalle g telles que g une fonction définie sur un intervalle g telles que g une fonction définie sur un intervalle g telles que g une fonction définie sur un intervalle g telles que g une fonction définie sur un intervalle g telles que g telles que g une fonction définie sur un intervalle g telles que g telles que

- Si f est dérivable en a et g dérivable en b = f(a) alors $(g \circ f)$ est dérivable en a et $(g \circ f)'(a) = g'(f(a)) \times f'(a)$
- Si f est dérivable sur I et g dérivable sur J alors $(g \circ f)$ est dérivable sur I et pour tout a dans I on a : $(g \circ f)'(a) = g'(f(a)) \times f'(a)$

Preuve:

Puisque f est dérivable en a alors : $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$

Et Puisque g est dérivable en b=f(a) alors : $\lim_{k\to 0}\frac{g(b+k)-g(b)}{k}=g'(b)$

On a:

$$\lim_{h\to 0}\frac{(gof)(a+h)-(gof)(a)}{h}=\lim_{h\to 0}\frac{g(f(a+h))-g(f(a))}{h}$$

On pose k = f(a+h) - f(a)

On a : $\lim_{h\to 0} k = \lim_{h\to 0} f(a+h) - f(a) = 0$ car f est continue en a (car elle est dérivable en a)

et f(a + h) = k + f(a) par suite :

$$\begin{split} \lim_{h \to 0} \left[\frac{g(f(a+h)) - g(f(a))}{h} \right] &= \lim_{h \to 0} \left[\frac{g(f(a)+k) - g(f(a))}{h} \right] \\ &= \lim_{h \to 0} \left[\frac{g(f(a)+k) - g(f(a))}{k} \times \frac{k}{h} \right] \\ &= \lim_{h \to 0} \left[\frac{g(f(a)+k) - g(f(a))}{k} \times \frac{f(a+h) - f(a)}{h} \right] \qquad \text{car} : k = f(a+h) - f(a) \\ &= \lim_{k \to 0} \left[\frac{g(f(a)+k) - g(f(a))}{k} \right] \times \lim_{h \to 0} \left[\frac{f(a+h) - f(a)}{h} \right] \\ &= g'(f(a) \times f'(a) \end{split}$$

Exercice:

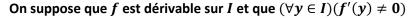
Déterminer les fonctions dérivées des fonctions suivantes :

- 1. $f(x) = \sin(2x^2 + 1)$
- $2. \quad g(x) = \cos\left(\frac{1}{x^2 + 1}\right)$
- 3. $h(x) = \tan(\cos x)$

III) DERIVATION DE LA FONCTION RECIPROQUE :

1) Propriété et exemple.

Soit f une fonction continue strictement monotone sur I et soit f^{-1} sa fonction réciproque de I = f(I) vers I.



Montrons que f^{-1} est dérivable sur J.

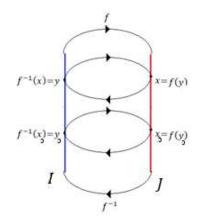
$$\lim_{x \to x_0} \frac{f^{-1}(x) - f^{-1}(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{y - y_0}{f(y) - f(y_0)}$$

$$= \lim_{x \to x_0} \frac{1}{\frac{f(y) - f(y_0)}{y - y_0}}$$

$$= \lim_{y \to y_0} \frac{1}{\frac{f(y) - f(y_0)}{y - y_0}}$$

$$= \frac{1}{f'(y_0)}$$

$$= \frac{1}{f'(f^{-1}(x_0))}$$



Théorème:

Soient f une fonction continue strictement monotone sur I, et J = f(I) et a un élément de I

 $(\operatorname{car}(\forall y \in I)(f'(y) \neq 0))$

(car quand x tend $vers x_0$ on a $y = f^{-1}(x)$ tend $vers f^{-1}(x_0)$)

- Si f est dérivable en y_0 et $f'(y_0) \neq 0$ alors f^{-1} est dérivable en $x_0 = f(y_0)$ et $(f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}$.
- Si f est dérivable I et f' ne s'annule pas sur I alors f^{-1} est dérivable sur J et $(\forall x \in J)(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.

Exemple:

f(x) = cosx est une bijection de $[0, \pi]$ vers [-1,1] (Prouver-le)

Et on a $f\left(\frac{\pi}{2}\right) = 0$ et $f'\left(\frac{\pi}{2}\right) = \cos'\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1 \neq 0$ donc f^{-1} est dérivable en 0 et $(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))} = \frac{1}{\cos'\left(\frac{\pi}{2}\right)} = \frac{1}{-\sin\left(\frac{\pi}{2}\right)} = -1$

Remarque:

La première assertion du théorème précèdent nous permet de trouver $(f^{-1})'(x_0)$ sans savoir l'expression de f^{-1} ; il suffit de connaître $f^{-1}(x_0)$.

Exercice:

Soit
$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^3 + x^2$

1- Dresser le tableau de variation de *f*

A.KARMIM

- 2- Montrer que f est une bijection de \mathbb{R}^+ vers \mathbb{R}^+ et calculer f(1).
- 3- Déterminer $(f^{-1})'(2)$.

Exercice corrigé:

Soit la fonction $g(x) = \cos(2x)$

- 1- Dresser le tableau de variation de g dans $[0,\pi]$
- 2- Monter que g est une bijection de $\left[0,\frac{\pi}{2}\right]$ vers]-1,1[.
- 3- Vérifier que $\left(\forall y \in \left]0, \frac{\pi}{2}\right[\right) (g'(y) \neq 0)$ et déterminer $(g^{-1})'(x)$ pour x dans]-1,1[.

Correction:

1- g est dérivable sur \mathbb{R} et $(\forall x \in \mathbb{R})(g'(x) = -2\sin(2x))$

- Si $x \in [0, \frac{\pi}{2}]$ alors $2x \in [0, \pi]$ et par suite $g'(x) = -2\sin(2x) \le 0$ Si $x \in [\frac{\pi}{2}, \pi]$ alors $2x \in [\pi, 2\pi]$ et par suite $g'(x) = -2\sin(2x) \ge 0$

x	0		$\frac{\pi}{2}$		π
g'(x)	0	_	0	+	0
g(x)	1		-1	*	1

2- La fonction g est continue (composition de deux fonctions continues) strictement décroissante de $\left|0,\frac{\pi}{2}\right|$ vers

$$g\left(\left]0,\frac{\pi}{2}\right[\right) = \left|\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x), \lim_{x \to 0^{+}} g(x)\right| =]-1,1[$$

Donc g est une bijection de $\left]0,\frac{\pi}{2}\right[$ vers]-1,1[; soit g^{-1} sa fonction réciproque.

3- On a : g est dérivable sur $\left[0,\frac{\pi}{2}\right]$ et $\left(\forall x\in\left[0,\frac{\pi}{2}\right]\right)\left(g'(x)=-2\sin(2x)\neq0\right)$ donc g^{-1} est dérivables sur $\left]-1,1\right[$.

Soit
$$x \in]-1,1[$$
; $(g^{-1})'(x) = \frac{1}{g'(g^{-1}(x))}$

$$= \frac{1}{-2\sin(2g^{-1}(x))} \qquad (\forall \alpha \in]0,\frac{\pi}{2}[) \left(\sin 2\alpha = \sqrt{(1-\cos^2(2\alpha))}\right)$$

$$= \frac{1}{-2\sqrt{1-\cos^2(2(g^{-1}(x)))}}$$

$$= \frac{1}{-2\sqrt{1-(g(g^{-1}(x))^2)}}$$

$$= \frac{-1}{2\sqrt{1-x^2}}$$

2) La dérivée de la fonction arctan

Activité:

- 1- Montrer que la fonction arctan est dérivable sur \mathbb{R} .
- 2- Montrer que $(\forall x \in \mathbb{R}) \left(arctan'(x) = \frac{1}{1+x^2} \right)$

Propriété:

La fonction arctan est dérivable sur \mathbb{R} et $(\forall x \in \mathbb{R}) \left(arctan'(x) = \frac{1}{1+x^2} \right)$

Corolaire:

Soit u une fonction définie sur un intervalle I.

Si u est dérivable sur I alors $\arctan(u(x))$ est dérivable sur I et $(\forall x \in I) \left((\arctan(u(x)))' = \frac{1}{1 + (u(x))^2} \right)$

Preuve (En exercice)

Exercice:

Soit la fonction f définie sur \mathbb{R}^* par : $(\forall x \in \mathbb{R}) \left(f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right) \right)$

- 1- Montrer que f est une constante sur $]0, +\infty[$, et trouver f(x) pour x dans $]0, +\infty[$.
- 2- Déterminer : $\lim_{x \to +\infty} \left(\frac{Arctan(2x^2+x+1) \frac{\pi}{2}}{2Arctan(x) \pi} \right)$.

3) La dérivée de la racine n-eme

Activité:

- 1- Montrer que la fonction $x \mapsto \sqrt[n]{x}$ est dérivable sur $]0, +\infty[$.
- 2- Montrer que : $(\forall x \in]0, +\infty[)((\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}}$
- 3- Soit u une fonction dérivable sur I et strictement positif sur I.
 - a) Montrer que $\sqrt[n]{u}$ est dérivable sur I.
 - b) Montrer que $(\forall x \in I)(\left(\sqrt[n]{u(x)}\right)' = \frac{u(x)}{n\sqrt[n]{\left(u(x)\right)^{n-1}}}$

Propriété 1 :

Soit n un entier naturel non nul

- La fonction $x \mapsto \sqrt[n]{x}$ est dérivable sur $]0, +\infty[$ et $(\forall x \in]0, +\infty[)((\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}}$
- Si u une fonction dérivable sur I et strictement positif sur I alors la fonction $\sqrt[n]{u}$ est dérivable sur I et $(\forall x \in I) \left(\sqrt[n]{u(x)} \right)' = \frac{u'(x)}{n \sqrt[n]{\left(u(x)\right)^{n-1}}}$

Exercice 1:

Déterminer les domaines de dérivabilité et les fonctions dérivées des fonctions suivantes :

$$f(x) = \sqrt[3]{3x^2 + x - 4}$$

$$g(x) = \sqrt[4]{\frac{2x-1}{x^2-x}}$$

Exercice 2:

Déterminer la limite : $\lim_{x\to 0}\frac{\sqrt[5]{x^4+1}-\sqrt[4]{x^3+1}}{\sqrt[3]{x^2+1}-\sqrt{x+1}}$

Propriété 2:

Soit r un nombre rationnel

- La fonction $x \mapsto x^r$ est dérivable sur $]0, +\infty[$ et $(\forall x \in]0, +\infty[)((x^r)' = r x^{r-1}]$
- Si u une fonction dérivable sur I et strictement positif sur I alors la fonction u^r est dérivable sur I et $(\forall x \in I)((u(x))^r)' = r u'(x).(u(x))^{r-1}$

Exercice:

Soit la fonction définie par :
$$\begin{cases} f(x) = \frac{1 + sinx}{cosx} & \text{si } x \in [0, \frac{\pi}{2}[\\ f(x) = \frac{4}{\pi} \arctan(\sqrt[3]{1 - x^3}) & \text{si } x \in] - \infty, 0[\end{cases}$$

- 1- Etudier la continuité et la dérivabilité de f en 0.
- 2- Calculer les limites $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} f(x)$; $\lim_{x \to -\infty} f(x)$
- 3- Soit g la restriction de la fonction f sur $[0,\frac{\pi}{2}[=I]]$
 - a) Déterminer l'intervalle I image de I par g
 - b) Montrer que la fonction g admet une fonction réciproque g^{-1} et que g^{-1} est dérivable sur J.
 - c) Montrer que : $(\forall x \in J)((g^{-1})'(x) = \frac{2}{1+x^2}$
 - d) En déduire $g^{-1}(x)$ pour tout x dans J.
- 4- Etudier les variations de f sur $]-\infty,0[$.