الموسم الدراسي : 2015/2016

المديرية الإقليمية للتربية و التكوين تارودانت

الثانوية التأهيلية محمد السادس – تالوين

الأستاذ : معـاذ أكرام

المستوى : الثانية باكلوريا علوم رياضية – أ

سلسلة نمارين درمر الفضاءات المنجهية الحفيفية

التمرين 1

 \mathbb{R}^3 استقلال الأسر التالية \mathbb{R}^3

$$\mathcal{B}_2 = \{(1,1,-1),(1,-1,0)\}$$
 $\mathcal{B}_1 = \{(1,0,1),(2,1,-1),(0,1,-2)\}$

$$\mathcal{B}_4 = \{(1,1,1), (2,-1,1), (1,0,1)\}$$
 $\mathcal{B}_3 = \{(3,-1,1), (-1,0,2), (1,0,-2)\}$

التمرين 2

 \mathbb{R}^3 حدد من بين الأسر التالية التى تكون اساس للفضاء المتجهى 1

$$\mathcal{B}_1 = \{(1,1,1), (3,0,-1), (-1,1,-1)\}$$

$$\mathcal{B}_2 = \{(1, 1, -1), (1, -1, 0)\}$$

$$\mathcal{B}_3 = \{(1,2,1), (3,0,-1), (1,8,1)\}$$

$$\mathcal{B}_4 = \{(1, 2, -3), (1, 0, -1), (1, 1, 0)\}$$

التمرين 3

. في الفضاء المتجهى \mathbb{R}^3 نعتبرالمجموعات

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 / x + y - 4z = 0\}$$
 $E_2 = \{(x, y, z) \in \mathbb{R}^3 / x - 2y + z = 0\}$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3 / xy - z = 0\}$$
 $E_4 = \{(x, y, z) \in \mathbb{R}^3 / x - 2y = 0etz - x = 0\}$

$$E_5 = \left\{ (x,y,z) \in \mathbb{R}^3 / \quad x+y-4z = 0 \right\} \qquad E_6 = \left\{ (\alpha,\beta,2\alpha) / \quad (\alpha,\beta) \in \mathbb{R}^2 \right\}$$

 \mathbb{R}^3 حدد من بين المجموعات اعلاه التى تمثل فضاءات متجهية جزئية للفضاء المتجهى 1

4 التمرين

$$E = \left\{ (x,y,z) \in \mathbb{R}^3 / \quad x-y+3z=0
ight\}$$
 نعتبر المجموعة E المعرفة بما يلى :

- .1. بین أن (E,+,.) فضاء متجهی حقیقی.
- $\overrightarrow{e_2}=(1,1,0)$ و $\overrightarrow{e_1}=(0,3,1)$: نعتبر في الفضاء المتجهين $(\mathbb{R}^2,+,.)$ المتجهتين 2

$$(E,+,.)$$
 بين أن الأسرة $\{\overrightarrow{e_1};\overrightarrow{e_2}\}$ أسرة مولدة للفضاء المتجهى 1.2

$$(E,+,.)$$
 بين أن الأسرة $\{\overrightarrow{e_1},\overrightarrow{e_2}\}$ حرة في الفضاء 2.2

 $\dim E$ استنتج

التمرين 5

نعتبر المجموعة $\{1\}$ و E مجموعة الدوال العددية f المعرفة على D بما يلي : $f(x)=rac{P(x)}{x^3-1}$. حيث P(x) حدودية درجتها أصغر أو يساوى 2.

- .1. بین أن (E,+,.) فضاء متجهی حقیقی.
- $g_3(x) = \frac{1}{x^2 + x + 1}$ و $g_2(x) = \frac{x}{x^2 + x + 1}$ و $g_1(x) = \frac{1}{x 1}$ نعتبر الدوال .2
 - $\mathcal{B} = \{g_1, g_2, g_3\}$ بين أن الأسرة.1.2
 - $.\mathcal{B}$ بالنسبة للأساس، $h(x)=rac{1}{x^3-1}$ بالنسبة للأساس. .2.2

التمرين 6

. $(P_4,+,.)$ مجموعة الحدوديات التى درجتها أصغر من أو يساوى 4 بحيث : $\mathcal{B}=\{1,x,x^2,x^3,x^4\}$ أساس للفضاء المتجهى

- $\mathcal{T}=\left\{(1+x)^4,x(1+x)^3,x^2(1+x)^2,x^3(1+x),x^4
 ight\}$ اساس للفضاء المتجهى $\mathcal{T}=\left\{(1+x)^4,x(1+x)^3,x^2(1+x)^2,x^3(1+x),x^4
 ight\}$.1
 - \mathcal{T} في الأساس $P(x) = x^3 + x^2 + 2x 1$ في الأساس .2

7 التمرين

 $(orall (x,y),(x',y')\in E)$; (x,y)+(x',y')=(xx',y+y') : نعرف في المجموعة $E=\mathbb{R}_+^* imes\mathbb{R}$ قانون التركيب الداخلي $E=\mathbb{R}_+^*$ قانون التركيب الداخلي معاملاته في \mathbb{R} بمايلي : $(\forall lpha\in\mathbb{R})$; $(\forall (x,y)\in E)$: $\alpha(x,y)=(x^lpha,lpha y)$: وقانون التركيب الداخلي معاملاته في \mathbb{R} بمايلي :

- $arphi: \mathbb{R}^2 \longrightarrow E$: نعتبر التطبيق: .1 نعتبر التطبيق:
 - . نذکر $(\mathbb{R}^2,+,.)$ فضاء متجمی حقیقی
- (E,+) نحو $(\mathbb{R}^2,+)$ نحو (E,+) نحو (E,+) نحو (E,+)
 - استنتج أن (E,+) زمرة تبادلية. 1.2
- (E,+) في (x,y) وما هو مماثل (x,y) في (E,+) عنى (E,+)
 - . بین أن (E,+,.) فضاء متجمى حقیقى 2

التمرين 8

 $E=\left\{f:x\mapsto (ax+b)e^{2x}/\quad (a,b)\in\mathbb{R}^2
ight\}$ نعتبر المجموعة التالية :

- (E,+,.) فضاء متجهی حقیقی. 1.
- $f_2(x)=e^{2x}$ و $f_1(x)=xe^{2x}$ و f_2 الدالتين العدديتين المعرفتين على $\mathbb R$ بما يلى f_2 و f_2 الدالتين العدديتين المعرفتين على $\mathbb R$
 - .E بين أن الأسرة $\mathcal{B}=\{f_1,f_2\}$ أساس للفضاء المتجهى 2.1
- \mathcal{B} بين أن الدالة $g(x)=\int_0^x (t+rac{1}{2})e^{2t}dt$ تنتمي الى المجموعة E محدداً زوج احداثياتها بالنسبة للأساس $g(x)=\int_0^x (t+rac{1}{2})e^{2t}dt$