
1/15

الامتحان التجريبي الموحد الثالث للبكالوريا

2013/06/05					
المعامل: 3					
3	مدة الإنجاز :				

علوم المهندس	:	المسادة

شعبة العلوم الرياضية - ب-

ب(ة) - المسلك:

Constitution de l'épreuve

Volet 1: présentation de l'épreuve page 1 Volet 2: Présentation du support page 2

Volet 3: Substrat de sujet : pages (3-4)

Documents réponses D.Rep pages (5-6-7-8-9-10) Volet 4: **Documents ressources D.Res** pages (11-12-13-14)

Grille d'évaluation Volet 5: page 15

Volet 1 : Présentation de l'épreuve

Système à étudier : Système de levage à colonnes ;

Durée de l'épreuve : 3h: Coefficient :

Moyens de calcul autorisés : seules les calculatrices scientifiques non

programmables sont autorisées;

Documents autorisés : Aucun

• Conseils aux candidats :

☞ Vérifier que vous disposez bien de tous les documents (1/15 à 15/15);

Faire une lecture attentive afin de vous imprégner du sujet ;

Rédiger les réponses aux questions posées sur les documents réponses DR prévus.

Tous les documents réponses D.Rep sont à rendre obligatoirement

الصفحة 2/15

- موضوع الامتحان السهدس، الشعب الموحد الثالث للبكالوريا 2012-2013 مادة: علوم المهندس، الشعب (ق) أو المسلك: شعبة العلوم الرياضية ب-

Volet 2 : Présentation du support

Le premier réseau de tramway à traction électrique est devenu opérationnel cette année (2011) pour relier les deux pôles de l'agglomération Rabat Salé. Ainsi deux lignes de tramway, totalisant 32 stations d'arrêt sur un parcourt de 19,5 Km, sont réalisées.

La société d'exploitation de ce réseau de transport en commun assurera aussi l'entretien des rames dans ses ateliers de maintenance.

Pour effectuer les différentes interventions : contrôles, réglages, remplacement des éléments défectueux..., l'atelier de maintenance peut être équipé de systèmes de levage de trame (objet de notre étude) pour soulever les rames du tramway.

Problématique :

Comment soulever une rame de tramway de 45 tonnes et de 30 mètres de long à une hauteur suffisante (de l'ordre de 1m70) pour réaliser la maintenance des boggies et divers matériels se trouvant sous le tramway ?

Le système de levage est constitué d'une <u>armoire de commande (nommée PC)</u> munie d'un <u>pupitre de commande</u>, d'un <u>API (Automate Programmable Industriel</u>), de <u>contacteurs et cartes de commande</u> pour moteurs. Cette PC peut gérer jusqu'à 10 colonnes de levage. Ces colonnes de levage (voir **photo D.Res 1**) sont des unités indépendantes mobiles que l'on peut déplacer manuellement grâce à des roues escamotables. Elles sont constituées d'un chariot de levage (voir **figure1 D.Res 2**) guidé par 4 galets roulant à l'intérieur d'une colonne (rails en tôle pliée). L'entraînement du chariot se fait par une vis à filet trapézoïdal (voir figure2 **D.Res2**), mise en rotation par un <u>moto-réducteur-frein asynchrone triphasé</u>. On met en place les colonnes au niveau de la plateforme de la rame de tramway à soulever, aux endroits prévus à cet effet.

Pour soulever une rame de tramway de 45 tonnes et de 30 mètres de long, le service de maintenance utilise 8 colonnes de levage d'une capacité unitaire maximale de <u>8,2 tonnes</u> commandées simultanément (voir **photo D.Res 1**).

Lorsque les colonnes sont en place, on démarre le cycle de levage : l'opérateur peut choisir un fonctionnement manuel ou automatique par l'action sur un <u>sélecteur (commutateur)</u>. En mode automatique, on affiche sur le pupitre la consigne de hauteur à atteindre, la PC pilote alors chaque moteur des 8 colonnes jusqu'à ce que cette hauteur soit atteinte et signalée par l'allumage d'une <u>lampe verte</u>. Chaque colonne est équipée d'un <u>codeur incrémental</u> informant la PC de la position du chariot de levage de la colonne. Pour un fonctionnement en toute sécurité, il faut assurer une certaine horizontalité de la rame soulevée.

Volet 3 : Substrat du sujet

Situation d'évaluation n°1

La société d'exploitation du tramway, souhaite acquérir les systèmes de levage à colonnes pour équiper son atelier d'entretien et de maintenance. Un commercial a proposé à la société un modèle de système de levage. Vous êtes invités à découvrir ce système et son environnement. Votre travail consiste à réaliser les tâches suivantes en étudiant le produit uniquement lors de sa phase d'utilisation.

Après avoir pris connaissance de la présentation du support ; on vous demande de découvrir le système de levage à colonnes et son environnement à travers les outils de l'analyse fonctionnelle :

- **1.1.** A partir de la liste présentée dans **le tableau 1, D.Res2,** compléter sur le document **D.Rep1** le modèle fonctionnel du système (actigramme A-0) par les éléments qui conviennent.
- 1.2. A partir de la liste des fonctions de service présentées dans le tableau 2, D.Res2, compléter sur le D.Rep1 le diagramme partiel des interacteurs (pieuvre).
- **1.3.** Sur le document **D.Rep2**, compléter le diagramme **FAST** de la fonction principale **Fp**, par les solutions technologiques retenues.
- **1.4.** Sur le document **D.Rep3**, compléter la chaîne fonctionnelle (structure générale) d'une colonne du système de levage.

Situation d'évaluation n°2

Pour le service de maintenance, connaître le fonctionnement mécanique du système s'avère important. Pour cela on vous amène à appréhender le fonctionnement en réalisant les tâches pouvant mener au choix du moteur réducteur frein.

- **2.1.** En se référant au **D.Res3**, compléter sur le **D.Rep4** le schéma cinématique d'une colonne de levage par les symboles des liaisons manquantes.
- 2.2. Etude du système vis-écrou.

En se référant au **D.Res4**:

- **2.21** Sur **D.Rep4**, compléter l'actigramme A-0 du système proposé.
- **2.22** Sur **D.Rep5**, calculer la vitesse de rotation angulaire ω " en rad/s de la vis.
- 2.23 Sur D.Rep5, calculer le couple C" en N.m nécessaire pour soulever la charge F.
- 2.3. Etude du réducteur.

En se référant au **D.Res3 et D.Res4**.

2.31 Sur **D.Rep5**, compléter l'actigramme A-0 du réducteur.

الصفحة
4/15

- موضوع الامتحان التجريبي الموحد الثالث للبكالوريا 2012-2013 مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية-ب-

- 2.32 Sur D.Rep 5, compléter le tableau des caractéristiques du réducteur.
- **2.33** Sur **D.Rep 6**, calculer la puissance utile du moteur et en déduire sa puissance absorbée, sachant que son rendement est : $\eta_m = 0.76$.

Situation d'évaluation n°3

Pour toute intervention future de maintenance sur la colonne de levage, il est indispensable de connaître parfaitement :

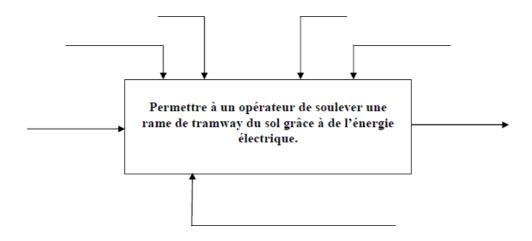
- Le principe du freinage et de l'inversion du sens de rotation d'un moteur asynchrone triphasé.
- Les constituants d'une alimentation stabilisée.

Dans ce but on vous demande de réaliser les tâches suivantes :

- **3.1** En tenant compte de la description du frein électromagnétique donnée sur le **D.Res4**, compléter sur **D.Rep6** le tableau résumant le fonctionnement du frein par les éléments de réponse proposés.
- **3.2** Les mouvements de montée et de descente de chaque colonne de levage (les mouvements des huit colonnes sont synchronisés) sont assurés par un moteur asynchrone triphasé à deux sens de rotation. Compléter alors sur le **D.Rep6** le schéma de câblage du circuit de puissance du moteur M d'une colonne.
- **3.3** Le moteur asynchrone est équipé d'un frein électromagnétique triphasé à manque de courant. Compléter sur le **D.Rep6** le câblage des bobines du frein.
- **3.4** La partie commande est alimentée par une tension continue stabilisée de 24 V. A partir du **D.Res4** compléter le tableau du **D.Rep6** par l'indication de la fonction de chaque élément.

لصفحة	١
5/15	

- موضوع الامتحان الستجريبي الموحد الثالث للبكالوريا 2012-2013 مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية ب


Note: 20 5

Document réponse DR1

1.1. L'actigramme A-0 du système :


N° du condidat :

1.2. Diagramme partiel des interacteurs (Pieuvre) :

Acquérir

Distribuer

Alimenter en électricité الصفحة 8/15 - موضوع الامتحان الستجريبي الموحد الثالث للبكالوريا 2012-2013 مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية ب

Document réponse DR4

2.1. Chaine cinématique :

(...../1,5pts)

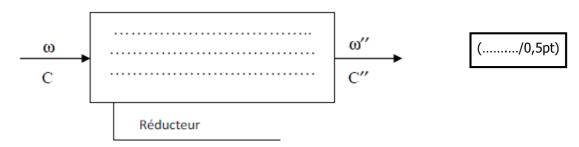
2.21. L'actigramme A-0 du système vis-écrou :

(...../0,5pt)

سفحة	الد
9/1	5

- موضوع الامتحان الستجريبي الموحد الثالث للبكالوريا 2012-2013 مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية ب

Document	t ré	ponse	DR5
Document		POLIDE	


2.22 Calcul de la vitesse de rotation angulaire ω de la vis en rad/s.	L	, , ,		

2.23 Calcul du couple nécessaire C'' pour soulever la charge F en N.m. (....../1pt)

.....

2.3. Etude du réducteur.

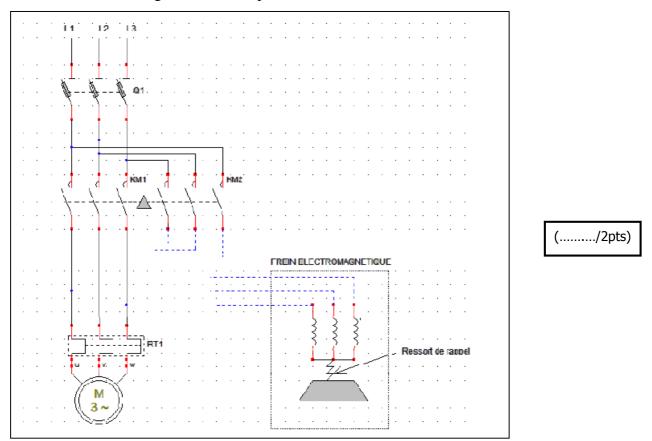
2.31 L'actigramme A-0 du réducteur.

2.32 Le tableau des caractéristiques du réducteur.

(...../2,5pts)

Engrenage	Cylindrique		con	ique	
Roues	1	2	3	4	
Nombres de dents Z	Z ₁ = 15	Z ₂ = 75	Z ₃ =14	Z ₄ = 33	
Rendement de l'engrenage η	η ₁₂	= 0,9	η ₃₄ = 0,9		
	η_{14} =				
Rapport de transmission	k ₁ =		k ₂ =		
Rapport de transmission global	k =				
Vitesse de rotation	ω =			endra :	
	N _m =	tr/min	N ₄ = tr/min		

0040 0040 1 10411 5 11511 . 11
- موضوع الامتحان الـــَــجريبي الموحد الثالث للبكالوريا 2012-2013 مادة : علوم المهندس، الشعــب(ة) أو المسلك : شعبة العلوم الرياضية ـبـ
ماده: علوم المهندس، السعب) أو المسلك: سعبه العلوم الرياضية-ب-


Document réponse DR6

2.33 Calcul de la puissance utile Pu et puissance absorbée Pa.	(/1pt)	

3.1 Tableau de fonctionnement du frein électromagnétique. (...../2pts)

	Entrefer [5]	Ressorts [7]	[1-[2] et [6]	Freinage
Bobine non				
alimentée				
Bobine				
alimentée				

3.2et 3.3 Le schéma de câblage du circuit de puissance M d'une colonne.

3.4 Compléter le tableau par l'indication de la fonction de chaque élément de l'alimentation stabilisée.

symbole	220v/24v	pont de Graetz	E &nd S	(/2pts)
fonction			 	

الصفحة 11/15 - موضوع الامتحان التجريبي الموحد الثالث للبكالوريا 2012-2013 مادة: علوم المهندس، الشعب(ة) أو المسلك: شعبة العلوم الرياضية ب

Document ressource DRes 1

- موضوع الامتحان الستجريبي الموحد الثالث للبكالوريا 2012-2013 مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية ب

Document ressource DRes 2

Figure 1:

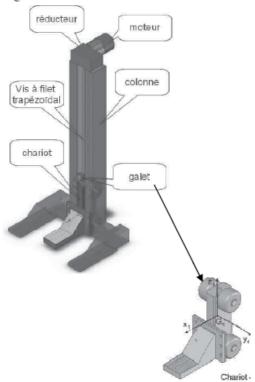


Figure 2:

Tableau 1:

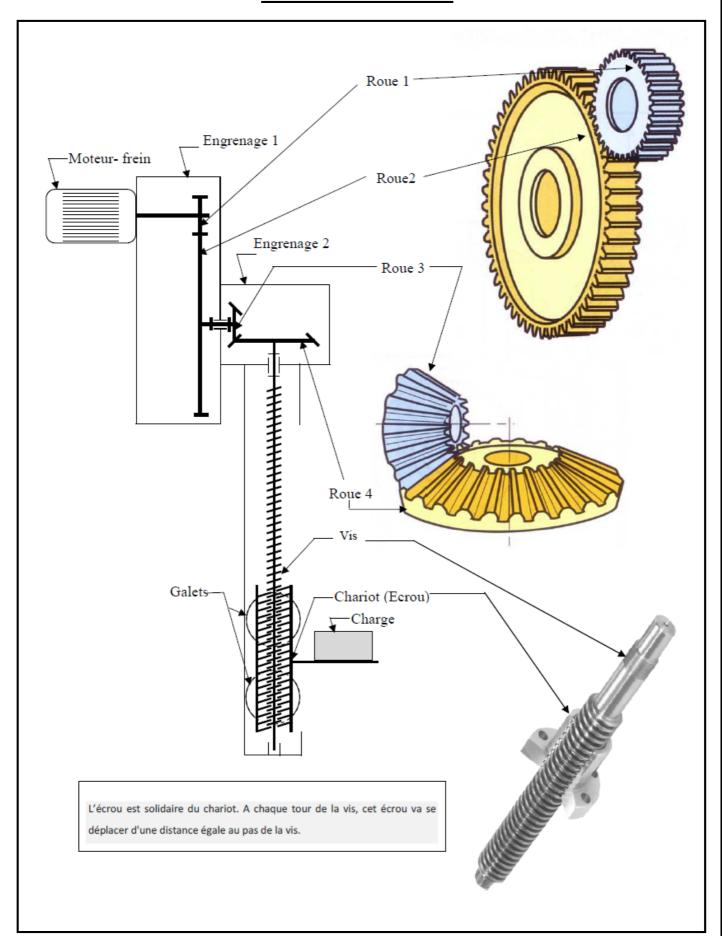
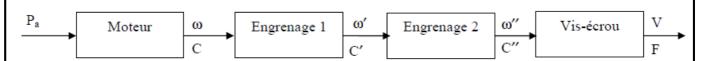

Rame en position basse	Energie électrique	Système de levage	Sol	Energie hydraulique
Configuration	Réglage	Opérateur	Rame en position haute	Exploitation

Tableau 2:

Fonction de service	Critères	Niveaux pour une colonne
Fp : Permettre à un opérateur de	nettre à un opérateur de Hauteur maxi	
soulever une rame de tramway du sol grâce à l'énergie électrique.	Vitesse maxi	10 mm/s
Fc1 : S'adapter à la plateforme de	Coplanéité des points de levage.	
la rame.	Surface d'appui au contact de la	
	plateforme.	
Fc2 : Etre stable mécaniquement.	Surface d'appui au sol	
	Résistance mécanique du sol	
Fc3 : Etre alimenté.	Tension de puissance.	220-380 V
	Tension de commande.	24 V continu
Fc4 : Assurer la sécurité de	Vitesse de descente hors énergie.	Nulle
l'opérateur.		


الصفحة 13/15 - موضوع الامتحان الستجريبي الموحد الثالث للبكالوريا 2012-2013 مادة : علوم المهندس، الشعب(ة) أو المسلك : شعبة العلوم الرياضية ب

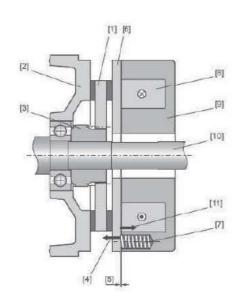
Document ressource DRes 3

Document ressource DRes 4

Chaîne cinématique de la colonne de levage

On donne:

ω": Vitesse angulaire de sortie de l'engrenage 2


C": Couple de sortie de l'engrenage 2 F: Charge à soulever soit F = 82 000 N

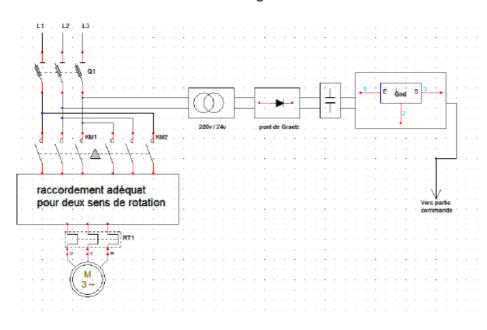
V : Vitesse de montée de la charge soit V = 10 mm/s

Caractéristiques du système vis-écrou

1 filet trapézoïdal de pas : p = 5 mm à droite η_4 : Rendement du système vis-écrou soit η_4 = 0,4

Système de freinage

[1] Porte-garnitures (disque) - [2] Flasque-frein - [3] Moyeu
d'entraînement [4] Action des ressorts- [5] Entrefer - [6] Plateau presseur
- [7] Ressort de frein - [8] Bobine de frein - [9] Corps magnétique - [10]
Arbre moteur - [11] Force électromagnétique.


Analyse de fonctionnement du frein électromagnétique :

L'arbre $\underline{\mathbf{10}}$ est l'arbre moteur, le corps magnétique $\underline{\mathbf{9}}$ est fixe, le porte garniture $\underline{\mathbf{1}}$ (disque) est lié au moyeu d'entrainement $\underline{\mathbf{3}}$ par une liaison glissière matérialisée par des cannelures. Le moyeu d'entrainement $\underline{\mathbf{3}}$ est solidaire de l'arbre moteur.

Eléments de réponse :

Non - Non liés - Comprimé - Ouvert - liés - Oui - Fermé - Non comprimé

Schéma de câblage du moteur

Grille d'évaluation

Situation d'évaluation 1

TÂCHES	Note	
1.1 : Actigramme niveau A-O modélisant le système de levage	1,5 point	
1.2 Diagramme partiel des interacteurs (pieuvre) du système de levage	1,5 point	
1.3 : FAST de la fonction principale F _p	1 point	
1.4 : Chaîne fonctionnelle d'une colonne du système de levage.	2 points	
TOTAL SEV1:	6 points	

Situation d'évaluation 2

TÂCHES	Note
2.1 : Schéma cinématique d'une colonne de levage	1,5 point
2.21 : Actigramme A-0 du système vis-écrou	0,5 point
2.22 : Calcul de la vitesse de rotation angulaire ω'' de la vis.	1 point
2.23 : Calcul du couple C" nécessaire pour soulever la charge F.	1 point
2.31 : Actigramme du réducteur	0,5 point
2.32 : Tableau des caractéristiques du réducteur	0,5 ×5 = 2,5 points
2.33 : Calcul de P _u et P _a du moteur	1 point
TOTAL SEV2:	8 points

Situation d'évaluation 3

3.1 : Tableau résumant le fonctionnement du frein	2 points
3.2 : Schéma de câblage pour inversion du sens de rotation du moteur	1 point
3.3 : Schéma de câblage des bobines du frein	1 point
3.4: Indication de la fonction des éléments de l'alimentation stabilisée	2 points
TOTAL SEV3:	6 points

TOTAL SEV1+SEV2+SEV3
