الحلول

ترين1:

1. عد الأتماط الورائية وعد المظاهر الشارجية متساوى ، إن الطيلين متساق السيادة ويمكن حسب تريداتهم سياترة :

$$f(AceS)=1-0, 315=0,685$$

2- العظهر الخارجي البعوضات Acel/Acel مساوي العظهر الخارجي البعوضات Acel/Acel (حساسة المبيد) إن Acel/Acel العلام المراجعة البعوضات تموت إن الكمية المراجعة من الأنزيم التشط غير كافية.

3. لدينا هنا حالة السيادة ، مظهرين خارجيين و 3 أنماط وراثية ، لدلك نفترض على أن الساكنة في حالة توازن H-W

f(AceR)=p, f(AceS)=q

Ace [§] Ace [§]	Ace ⁹ Ace ⁸	Ace*/Ace*
q²	2pq	P ²
[9	5]	[R]
35	50	66

 $p^2 = 66/416 = 0,158 p = \sqrt{0,158} \approx 0,4$

q=1-0,4=0,6

4. لا يمكنه لغنيار التوازن لكونه افترضه مسبقا وسيجد حتما التوازن ، كما أن المعطيات لا تنضمن المعلومات بالقر الكافي ويترجم
 ذلك بغياب ddl لإنجاز الغنيار X² أو ما يصطلح عليه بمعيار pearson

التمرين 2:

	AA	Aa	aa	 AA	AB	BB
2	0,1	0,4	0,5			
ರೆ	0,7	0,2	0,1			

لأنتا لا تطم إذا كان هنك تساوى السيدة

مسلب تريد الأمشاج في الجيل n

$$pQ = \frac{(2 \times 0.1) \cdot 0.4}{2} = 0.3$$
 $qQ = 1-0.35 = 0.7$
 $pQ = \frac{(2 \times 0.7) + 0.2}{2} = 0.8$ $qQ = 1-0.8 = 0.2$

تردد الأنماط الوراثية في الجيل n+1:

AA
 Aa
 aa

$$p \circ \times p \circ \circ$$
 $p \circ \times q \circ \circ \circ + p \circ \times q \circ \circ$
 $q \circ \times q \circ \circ$

 0,24
 $0,06$
 $+$ 0,56
 0,14

 $0,62$

مساب تردد الأمشاح في الجيل n+1

$$p_{i+1} = \frac{(2 \times 0.24) + 0.62}{2} = 0.55$$

$$q_{i+1} = \frac{(2 \times 0.14) + 0.62}{2} = 0.45$$

تساوى تريدي - أ في الحيل الأول

تريد الأنماط الوراثية في الجيل n+2

AA Aa aa p_{z+1}^2 $2 \times p_{z+1} \times q_{z+1}$ q_{z+1}^2 0,3025 0,495 0,2025

- حساب تريد الأمشاج في الجيل n+2

$$p_{x+2} = \frac{(2 \times 0,3025) + 0,495}{2} = 0,55$$

$$q_{x+2} = \frac{(2 \times 0,2025) + 0,495}{2} = 0,45$$

حصول توازن H-W في الجيل n+2 (اثبات الترددات)

تمرين 3:

- حساب تردد العليلات عند 💍

Pw+d=170/200=0,85

 $P_{W} = 30/200 = 0.15$

حسف تردد الطيلات في الساكنة بأكملها
 تفترض أن الساكنة في حالة توازن H-W وأن تردد أ = تردد و ويذلك :

 P_{W}^{+} = 0,85 P_{W} = 0,15 = 6 في هذه الحالة تردد الإثنات بعيون بيضاء هو = 1 = 1 = 1 = 2 = 2.25%

تمرين 4:

	[ma+]	[ma-]	المظاهر الخارجية
المجنوع = 100	23 X***Y	77 X ^m Y	الذكور
المجموع = 100	56 X ^{ma+} X ^{ma+} X ^{ma+} X ^{ma-}	44 X ^{ma} ·X ^{ma} ·	الأنت

إذا كان لدينا توازن H-W قإن القريد عند $^{\circ}_{0}=$ القريد عند $^{\circ}_{0}=77/23+77=0,77$

إذا كانت هذه الساكنة في توازن H-W بالنسبة لهذه المورثة تستعمل p2 2pq q2

وعليه q2=44/100=0,44 ; f(Xm2)=q=0,66 ; p=1-q=0,34 وعليه

اعتمادا على هذه المسابلة:(f(X^ma-2) ≠ (g-4m);

إنن ليس هنك توازن ، لنصب اختبار التطابقية

إذا كانت هذه الساكنة في توازن H-W فإن

$$f(X^{ma} \cdot g) = q \cdot Q = f(X^{ma} \cdot g) = q \cdot Q = 0.77 \quad p = 0.23$$

	X112-X112-	Xna-Xna-	X X X na-
	0,232=0,05	2x0,23x0,77=0,35	0,772=0,6
العدد المنتظر	S. Western Control	40	60
الحد الملاحظ		56	44

3,01=12{ الحد الملاحظ - الحد المنتظر X2 = 5

لحد المتنظ

α = 5% و ddl = عدد الأنماط الوراثية - عدد الطيلات α = 5

X² المستظمة من الجنول إنن تساوي : 3.84 . ويما أن X² المحسوبة أكبر من X² السرجعية تحير فرضية التساوي غير مقبولة وتستنتج أن قراد هذه الساكنة لا تستجيب لقانون Hardy-weinberg

يمكن فقط حساب تربد الطيلات عند الذكور ، أما التربد عند الإناث فيستحيل معرفته .

تمرين 5:

ð	[قصير] 120	17	[طویل] 210	المجموع=330
	CC	Cc	cc	
)	p²	2pq	q²	ă.
Q	[قصير]	طويل]		

إذا كانت الساكنة في توازن H-W بالنسية لهذه المورثة ، فإن :

$$q^2 = 210/330 = 0,64$$
 $f(c) = q = 0,80$ $f(C) = p = 1-q = 0,2$; $f_{\odot}^{-2} = f_{\odot}^{-2} = f_{$

تمرين 6:

	XH	X
	1%	≈1
X^{\aleph}	$X^{\mathbb{R}}X^{\mathbb{R}}$	XHX
1%		
Y	X ^H Y	XY

جدول التزاوج

$$f([\circlearrowleft H]) = f(X^{\Xi}Y) : 1\% \times 1 = 1\%$$

 $f([\circlearrowleft H]) = f(X^{\Xi}X^{\Xi}) : 1\% \times 1\% = (0,01)^{2} = 0,01\%$

تعرين 7:

$$aa = 2 Aa$$

 $q^2 = 2 \times 2pq$
 $q^2 = 4pq$
 $q^2 = 4q(1-q)$
 $q^2 = 4q - 4q^2$
 $5q^2 = 4q$
 $5q = 4$
 $q = 4/5$

ئمرين 8:

[crépu	[frisė]	[normal]
M ^T M ^T	M ^N M ^F	M ^N M ^N
50 البحوع = 1000	800	150

تربد قطيلات

$f(M^s) = (2 \times 50 + 800)/2 \times 1000 = 0,45 = p \quad f(M^s) = (2 \times 150 + 800)/2 \times 1000 = 0,55 = q$

إذا كانت الساكنة في توازن H-W بالنسية لهذه المورثة ، فإن

=	[crépu]	[frisé]	[norn	
	M'M'	M M	M M	
	$\mathbf{p}^{t}_{\mathbf{p}^{T}\mathbf{N}}$	2pq 2pqN	\mathbf{q}^{i} \mathbf{q}^{N}	
	202,5	495	302,5	الحد المنتظر
	50	800	150	العد المحط
	1			

£ 379,6=2(الحد الملاحظ ـ الحد المنتظر]∑ = X²

لحد المنتظ

ddl = 3.2=1% a = 5 وddl عد الإنساط الورائية - عد الطيلات

X² المستظمة من الجدول إنن تساوى : 3.84 . وبما أن X² المحسوبة أكبر من X² المرجعية تعبر فرضية التساوى غير مقبولة وتستنتج أن قراد هذه الساكنة لا تستجيب لقانون Hardy-weinberg

تمرين 9: سطة قي توازن:

[0]

ii

ئدينا :

$$I^A = I^B > i$$
 $I^A p, I^B q, i r$

$$[A] + [O] = I^{A}I^{A} + I^{A}i + ii = p^{2} + 2pr + r^{2} = (p+r)^{2}$$

$$(p+r)^2 = \frac{[A] + [O]}{\text{theres}} \Leftrightarrow p+r = \sqrt{\frac{A] + [O]}{\text{theres}}}$$

$$\Leftrightarrow p = \sqrt{\frac{A] + [O]}{\text{theres}}}$$

$$[B] + [0] = I^BI^B + I^Bi + ii = q^2 + 2qr + r^2 = (q+r)^2$$

$$q = \sqrt{\frac{[D] \cdot [Q]}{r}}$$

$$p+q+r=1$$

[A] 36% [B] 12% [AB] 3% [O] 49%
$$\hat{r} = \sqrt{0.49} = 0.7 \qquad \hat{p} = \sqrt{0.49 + 0.36} - 0.7 = 0.22 \qquad \hat{q} = \sqrt{0.49 + 0.12} - 0.7 = 0.08$$

$$\hat{q} = \sqrt{0.49 + 0.12} - 0.7 = 0.08$$

3- % لمتشابهي الاقتران

-2

$$[A] = I^A I^A / [A]$$

= $p^2 / p^2 + 2pr$
= 0.135 : 13.5%

التمرين 10:

1- حسف تربد لطيلات:

حسك تردد الأتماط الوراثية المنتظرة حسب فاتون H-W:

 $F(AA): p^2 = (0.54)^2 = 0.2916$

 $F(AB) = 2pq=2 \times 0.54 \times 0.46 = 0.4968$

F(BB): q2=(0.46)2=0.2116

2-حساب المظاهر الخارجية المنتظرة حسب قانون H-W:

AA:p2N+0.2916x6129=1787.2

AB: 2pqN = 0.4968 x 6129 = 3044.9

BB: q2N= 0.2116 x 6129 = 1296.9

استنتاج: مما سبق و انطلاقا من مقارنة الأعداد النظرية بأعداد المظاهر الخارجية ينضح أن هذه الساكنة خاضعة لقانون . H-W

تمرين 11 :

-1

04	[S]	[ST]	[T]	
التمط الوراثي	$A^{S}A^{S}$	$\mathbf{A}^S\mathbf{A}^T$	$\mathbf{A}^{T}\mathbf{A}^{T}$	
العدد الملاحظ	36	27	18	

$$f(A^5) = \frac{36 \times 2 + 27}{2 \times 80} = 0.61$$
 $f(A^7) = \frac{18 \times 2 + 27}{2 \times 80} = 0.39$

2-توجد اساكته عي حله توازن

	[S]	[ST]	[T]
5	p ²	2pq	\mathbf{q}^2
العدد النظري	29.40	38.19	12.40
العدد الملاحظ	10-024CO	27	18

 $X^2 = 6,87$

α = 5 % وddl = 3-2=1 وddl = 3-2=1

X² المستخلصة من الجنول إن تساوي : 3,84 . ويما أن X² المحسوبة أكبر من X² المرجعية تحبر فرضية التساوي غير مقبولة وتستنتج أن قراد هذه الساكنة لا تستجيب لقانون Hardy-weinberg أو أن المحدد الورائي أكثر تحيدا مما تم التراضة

. مورئة بثلاث طيلات

ويسودان على ${f A}^0$ هذا التحديد الوراثي يمكن من تقسير مشكل الأقراد ${f A}^{T}={f A}^{S}$

الأربعة الناقصية

 $f(A^5)=p$; $f(A^T)=q$; $f(A^0)=r$

	[S]		[T]		[ST]	[0]	
	SS p ²	SO 2pr	TT q ²	TO 2qr	ST 2pq	00 r²	
العد الملاظ		36	74 74 75 N	18	27	4	$\Sigma = 85$

إذا كانت الساكنة في توازن H-W بالتسبة لهذه المورثة ، فإن

$$r^2 = f([O]) = 4 / 85$$
; $\hat{r} = 0.22$
 $[S] + [O] : p^2 + 2pr + r^2 = (p+r)^2$; $\hat{p} = \sqrt{[S] + [O]} - r$ $= \sqrt{\frac{49}{100}} r = 0.40$
 $[T] + [O] : q^2 + 2qr + r^2 = (q+r)^2$; $\hat{q} = \sqrt{[T] + [O]} - r = \sqrt{\frac{25}{100}} r = 0.29$
!!! $\hat{p} + \hat{q} + \hat{r} = 0.97$!!!

هذا الاتحراف عن القيمة 1 راجع إلى خطأ في طريقة تحديد العينة وإلى الطريقة المعتمدة لتقدير الترددات p,q,r والتي لم تأخذ بعين الاعتبار الأفراد [ST] "

4. تعم يمكن لختيار التوازن إذا ما اعتمدتا فرضية مورثة ب 3 طيلات ، تحسب الحد المنتظر الفنات الأربع

	[S]		T .	П	[ST]	[0]	
	SS	so	TT	то	ST	00	
	\mathbf{p}^2	2pr	\mathbf{q}^2	2qr	2pq	r2	
العدد الملاحظ	3	6	1	8	27	4	$\Sigma = 84$
	37	7.07	19	9.07	23.07	4.80	

 $X^2 = 0.98$ ddl = 3.2 = 1 و $\alpha = 5$ و $\alpha = 5$ و $\alpha = 5$ و $\alpha = 5$

X² المستخصة من الجنول إن تساوي : 3.84 . ويما أن X² المحموية أصغر من X² المرجعية تحير غرضية مورثة ب 3 طيلات مقبولة ونستنتج أن قراد هذه الساكنة تستجيب لقلون Hardy-weinberg

: 12 تمرين

A, B, C لايتا 3 حليلات:

$$f(A^1) = \frac{2x_{25}+113+9}{2 \times 268} = 0.32$$

$$f(A^2) = \frac{2406+113+15}{2 \times 268} = 0.63$$

$$f(A^3) = \frac{9+15}{2 \times 268} = 0.05$$

إذا كانت الساكنة في توازن Hardy-weinberg

3	A^1A^1	A^2A^2	A^1A^2	A ¹ A ³	A^2A^3	A^3A^3
Fr génotyp theo	p ²	\mathbf{q}^2	2pq	2pr	2qr	r²
Eff theo:	p^2N	q^2N	2pqN	2prN	2qrN	r ² N
eff theo	27.44	106.37	108.06	8.58	16.88	0.67
eff obs	25	106	113	9	15	0

 $X^2 = 1,35$ ddl = 6-3=3 $\alpha = 5\%$

X² المستخلصة من الجلول إنن تساوي : 7,81 . ويما أن X² المحسوبة أصغر من X² المرجعية تستنتج أن أقراد هذه الساكنة تستجيب لقانون Hardy-weinberg

ملحوظة : المحسوب غير ملاتم لأن عدد إحدى الفنات أصغر من 5

: 13مرين

1- تردد الطيلات: لدينا حالتين ممكنتين

A>a J A<a

A>a			A <a< th=""></a<>						
	AA	Aa	aa			AA	Aa	aa	2
	126	46	$\Sigma = 172$		126	46		$\Sigma = 172$	
Si HW	p²	2pq	q²	T. 615	Si HW	p²	2pq	q²	
q² = 46	/172 .;			0 .517 7=0,483	$p^2 = 126$		- 5	126	0,855

-إذا فترضنا مولود غير شرعي إذا كفت الام ذات فزحيه غير ملونة (aa, P=q²) واب بقزحيه غير ملونه (aa,P=q²) ومولود بقزحيه بنيه اللون (P=p) إنن احتمال ولادة غير شرعيه هو :

P=q²xq²xp=pq⁴ او ام ذات فرّحيه بدون تلون (aa, P=q²) واب يقرّحيه غير ملونه (aa,P=q²) لكي يكون للمولود فرّحيه بنيه اللون بجب ان يكون المشبح الصادر عن الحقيقي A . إذن الاب P=2) في P=9) في P=2pq) Aa

$$=> P(4)$$
 (مولود غير شرعي) = $q^2 \times q^2 \times ((p^2 \times 1) + (2pq \times \frac{1}{2}))$
 $= q^2 \times q^2 \times (p^2 + pq)$
 $= q^2 \times q^2 \times p(p+q)$
 $= pq^4$
 $= 0,025 \implies 2,5\%$

نمرين 14:

للمصول على مثل هذه العائلة ، يجب ان يكون الابوين mM :

$$\frac{2pq}{p^2+2pq}$$
 x $\frac{2pq}{p^2+2pq}$ =0,572

	M	m
M	M/M	M/m
m	M/m	m/m

تي مئل نده العائلة

A>a
$$q = 0,22$$

[قرة طويلة]		[ذرة غصيرة]
AA	Aa	aa
p²	2pq	q²

يجب ان تكون الذرة الطويلة Aa للحصول على خلف قصير

$$(\sqrt[3]{2 pq} - 0.36)$$
 × $(\sqrt[3]{2 pq} - 0.36)$ × $(\sqrt[3]{2 pq} - 0.36)$ × $(\sqrt[3]{2 pq} - 0.36)$

التزاوج Aa × Aa سيكونون قصار Aa × Aa مسيكونون قصار P = 1/4 × (0,36)² = 0,032 → 3,2%

لأمشاج A و a qa pa

a --- A

تسبة لطفرة m /المشيج/الجيل بعد الطفرة، (الأمشاج A المتعولة pn x u (الأمشاج A المتعولة pn+1 =pn- upn=pn(1-u) إنن:

> $q_{n+1} = q_n + up_n$ $p_{n+2} = p_{n+1}(1-u)$ $= p_n(1-u)^2$

اذن

 $p_{n+x} = p_n(1-u)^x$

P_n=1; x=1000 - أ Pn+x= 1(1-10-5)1000=0,99 Pn= 0,5; x=2000 - ب Pn+x= 0,5(1-10-5)2000=0,49 Pn=0,1; x=10000 - ث Pn+x= 0,1(1-10-5)10000=0,099

. مسكون للطفرة وحدها تثير ضعف على الساكنات و ينبغي أن يكون هناك عدد كبير من الأجيال لكي تكون التغييرات ملموسة ! في حين تعتبر الطفرات عاملا مهما لأنها تحدث التغيرية وينتسيق مع عامل أخر، (الانتقاء مثلا) يمكن لتردد الحليل الطافر أن يحافظ عليه (وقد يرتفع تردده ! حالة مقاومة مبيدات الحشرات)

نمرین: 17

∨
A1

U= 10⁻⁵ v=10⁻⁶

P_{n+1}=p_n-up_n+vq_n

 $P_{n+1} = p_n$ اذن $\Delta p = P_{n+1} - p_n = 0$ انن

 $p_n = p_n - up_n + vq_n$ $\forall p_n = vq_n$ $Up_n = v(1 - p_n)$ $Up_n = v - vp_n$ $p_n(u+v) = v$ v $p_n = \frac{v}{u+v}$

إنن : فتريد التوازن للطيلين هو :

تمرين 18

ليكن N_o الحد الفعل : يحي حجم سكنة مثالية وضعت تحث تأثير الانحراف، بحيث إن سلوكها الوراثي وتطورها سيكون هو نفسه عند السكنة المدروسة . حيتما يكون انتشار الجنسين غير متساوي، نقارب N_o بالصيغة التالية :

$$Ne = \frac{4N_m N_f}{N_m + N_f} = \frac{4 \times 1 \times \infty}{\infty} = 4$$

أما سائلة الإلك فهي لامتناهية.

تمرین 19

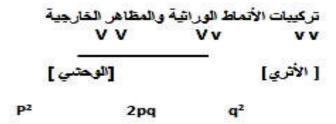
19=4×5×95 100=10 19فردا مع 1/2 ذكر و1/2 فشى

التمرين 20

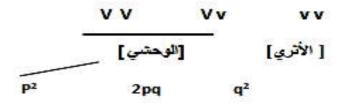
للمورثة حليلين، A و a إذا كان لقرد متشايه الاقتران aa يموت لقرد في الرحم

AA	Aa	aa
p^2	2pq	q^2
p^2	(2pq)	×

إذا لم يكن وجود ل aa ، فالقسم الوراثي الوحيد الذي يوجد فيه الحليل a هو قسم الأتماط المختلفة الافتران،

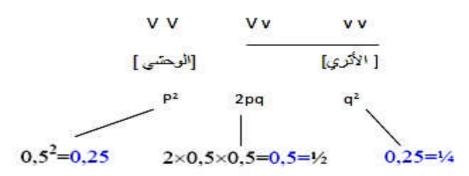

للحصول على أكبر عدد من الطبلات a ينبغي أن يكون أكبر عدد من الأقراد المختلفي الاقتران: %Aa 100 وتردد الطبل a الأقصى=%50 استنتاج: إذا وصل الطبل المعبت التردد الأقصى، فسوف تتكون السائلة إلا بمختلفي الاقتران

التمرين 21


للمورثة حليلين: ٧ و٧ ٧٥٧

في القفص توجد الساكنة 1/2 [وحشي] 1/2 x [أثري] تزيل الآباء في كل جيل ولايوجد أي تراكب بين الأجيال

أ- نتم النزاوجات بالصدقة لا يوجد أي انتقاء للمورثة العدد كبير جدا الطفرة شبه منعمة توازن H-W في جيل واحد



ب- حيتما ترفع خطاء الققص فالذباب [الوحشي] يطير

ييقى فقط [الأثري] إذا ٧٧ وهكذا ييقى الحليل ٧ فقط بتردد (٥=(٢) و 1 = (f(v) ويالنتالي فالأجيال الموالية ستكون كلها ٧٧ ويبقى هذا صالحا كذلك إذا ما أرحنا الغطاء في كل جيل

ت- إذا كان v سقدا : إذا طبق الانتقاء على جيل واحد

[الأثرى] 3/4 يبقى

[الوحشي] 1/4 يطير

الجيل n

و٧٧ في الساكنة

سوف لن يبقى إلا ٧٧

 $Vv: \frac{1}{2} / \frac{3}{4} = \frac{1}{2} * \frac{4}{3} = \frac{2}{3}$ $vv: \frac{1}{4} / \frac{3}{4} = \frac{1}{4} * \frac{4}{3} = \frac{1}{3}$

مساب تردد الطيلات في الجيل n

$$f(v) = \frac{2 \times \frac{1}{3} + \frac{2}{3}}{2} = \frac{\frac{4}{3}}{2} = 2/3$$

$$f(V) = \frac{\frac{2}{3}}{2} = 1/3$$

تربد الأتماط الوراثية في الجيل n+1

$$\frac{\text{VV}}{\text{p}^2}$$
 $\frac{\text{Vv}}{\text{2pq}}$ $\frac{\text{vv}}{\text{q}^2}$ $\frac{\text{VV}}{\text{2pq}}$ $\frac{\text{vv}}{\text{q}^2}$ $\frac{\text{VV}}{\text{2pq}}$ $\frac{\text{VV}}{\text{$

مسلب تريد الطيلات في الجيل1+ n

$$f(v) = \frac{2 \times 4/9 + 4/9}{2} = \frac{12/9}{2} = 6/9 = 2/3$$

$$f(V) = \frac{2 \times 1/9 + 4/9}{2} = \frac{6/9}{2} = 3/9 = 1/3$$

نعود إلى توازن H-W بعد جيل. لا تتغير التريدات في الجيل الموالي بعد الانتقاء

تظريا إذا طبق الانتقاء في كل جيل

تردد قطيلات بعد الانتقاء (على مستوى الأمشاج وعلى مستوى الجيليم)

$$p_n = \frac{2pq}{2 \times (2pq + q^2)} = \frac{p}{2p + q} = \frac{p}{2p + (1 - p)} = \frac{p}{1 + p}$$

$$q_n = \frac{2q^2 + 2pq}{2 \times (2pq + q^2)} = \frac{q + p}{2p + q} = \frac{1}{p + 1}$$

تردد الأتماط الوراثية في الجيل n+1

 VV
 VV
 VV

 [الاحتى]
 [الاحتى]

 Pn+1
 2pn+1qn+1
 qn+1

تردد الطيلات بعد الانتقاء (على مستوى الأمشاج)

$$p_{n+1} = \frac{p_n}{1+p_n} = \frac{\frac{p}{p+1}}{\frac{p}{p+1}+1} = \frac{\frac{p}{(p+1)}}{\frac{p+(p+1)}{p+1}} = \frac{p}{p+1} + \frac{p+1}{2p+1} = \frac{p}{2p+1}$$

$$q_{n+1} = \frac{1}{p_{n}+1} = \frac{1}{\frac{p}{p+1}+1} = \frac{1}{\frac{p+(p+1)}{p+1}} = \frac{p+1}{2p+1}$$

$$p_{n+1} = \frac{p_{n}}{p} = \frac{p+1}{p+1} = \frac{p+1}{p+(p+1)} = \frac{p}{p+1} * \frac{p+1}{2p+1} = \frac{p}{2p+1}$$

$$p_{n+1} = \frac{p_n}{1+p_n} = \frac{\frac{p}{p+1}}{\frac{p}{p+1}+1} = \frac{\frac{p}{(p+1)}}{\frac{p+(p+1)}{p+1}} = \frac{p}{p+1} * \frac{p+1}{2p+1} = \frac{p}{2p+1}$$

$$\mathbf{q_{n+1}} = \frac{1}{p_n + 1} = \frac{1}{\frac{p}{p+1} + 1} = \frac{1}{\frac{p + (p+1)}{p+1}} = \frac{p+1}{2p+1}$$

البحث عن التوازن

$$\Delta p = p_{n+1} - p$$

$$= \frac{p}{p+1} - p = \frac{p-p(p+1)}{p+1} = \frac{p-p^2-p}{p+1} = \frac{-p^2}{p+1}$$

$$\Delta p = p_{n+1} - p$$

$$= \frac{p}{p+1} - p = \frac{p-p(p+1)}{p+1} = \frac{p-p^2-p}{p+1} = \frac{-p^2}{p+1}$$

p=0 نكون في حقة توازن هينما تكون $\Delta p=0$ إذا هينما تكون $\Delta p=0$ سيقصى الطيل الوحشى مع مرور الزمن . في التوازن ، 0=(f(V)=0

22 30 45

الجيل n	AA	Aa	aa	
لتفترض أنه من الولادة يوجد الأفراد في تقاسب مع H-W	p_{n^2}	2p _n q _n	qa - 0,10	$q_n = 0$ $p_n = 0$
فيمة الانتقاءwaleur selective We)(في تناسب مع نسر البقاء=) aux taux de survie(1	i.	o	€.₩ .=1,679
البالغون	$1 \times \frac{p_{\pi}^2}{W}$	$1 \times \frac{2p_nq_n}{w}$	0	

$$\mathbf{p}_{n+1} = \frac{p_n^2 + p_n q_n}{W} = \frac{p_n^2 + p_n q_n}{p_n^2 + 2p_n q_n} = \frac{p_n + q_n}{p_n + 2q_n} \left(\frac{1}{1 + q_n} \right) = 0.715$$

$$\mathbf{q}_{n+1} = \frac{p_n q_n}{p_n^2 + 2p_n q_n} = \frac{q_n}{p_n + 2q_n} = \frac{q_n}{1 + q_n} = 0.285$$

a a

Aa

AA

0+1 لجيل

$$2p_{n+1}q_{n+1}$$

Pn+12

ليضات

1

1

V

$$\frac{2p_{n+1}q_{n+1}}{W}$$

 $\frac{p_{n+1}^2}{W}$

البالغون

$$\mathbf{p}_{n+2} = \frac{1}{1+q_{n+1}} = \frac{1}{1+\frac{q_n}{1+q_n}} = \frac{1}{\frac{1+q_n+q_n}{1+q_n}} = \frac{1+q_n}{1+2q_n} = 0,779$$

$$q_{n+2} = \frac{q_{n+1}}{1+q_{n+1}} = \frac{\frac{q_n}{1+q_n}}{1+\frac{q_n}{1+q_n}} = \frac{\frac{q_n}{1+q_n}}{\frac{1+q_n+q_n}{1+q_n}} = \frac{q_n}{1+2q_n} = 0.221$$

تحديد النسبة المانوية للأتماط الورائية الممينة في هذين الجيلين

$$q_{n+2}{}^2 = 0.048 = 4.8$$
 % A A $n+2$ $p_{n+2}{}^2$

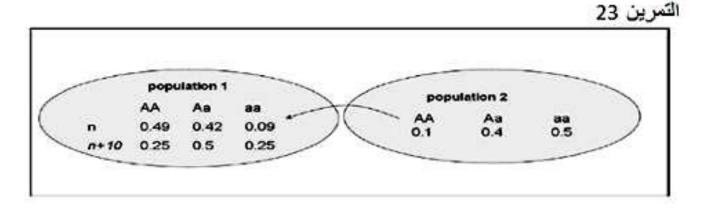
عدد الأجيال للمصول على 1% من أقراد متشابهي الاقتران بالنسبة لهذا الطيل

$$p_{x-n} = 0.9$$
 $q_{x-n} = 0.1$

1% تسبة الأفراد المتشابهي الاقتران

$$\mathbf{q}_{n+1} = \frac{q_n}{1+q_n}$$

$$\mathbf{q}_{n+2} = \frac{q_n}{1+2q_n}$$


$$\mathbf{q}_{n+x} = \frac{q_n}{1+xq_n}$$

$$\frac{1}{q_{n+x}} = \frac{1+xq_n}{q_n} = \frac{1}{q_n} + x$$

$$x = \frac{1}{q_{n+x}} = \frac{1}{q_n}$$

$$q_n = 0.4$$
1% aa $\Rightarrow q_{n+x} = 0.1$

$$x = \frac{1}{0.1} - \frac{1}{0.4} = 7.5$$

p_2 : تردد A في الساكنة p_2 : $p_{2n} = p_{2n+10}$ = $0.1 + \frac{1}{2}$

P1: تردد A في الساكنة 1

$$p_{1 n} = 0.49 + \frac{1}{2} \cdot 0.42 = 0.7$$

 $p_{1 n+10} = 0.25 + \frac{1}{2} \cdot 0.5 = 0.5$
 m ثابتهٔ حساب m

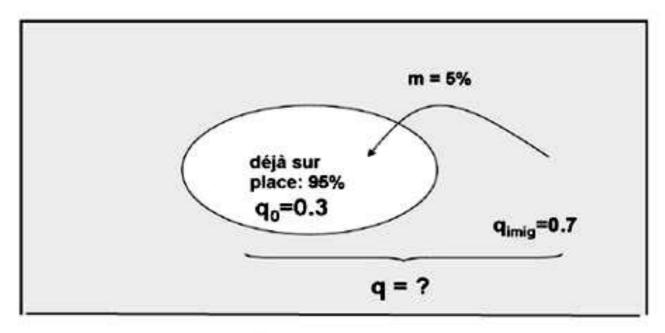
$$E_{n+x} = E_n (1-m)^x$$

$$E_{n+10} = E_n (1-m)^x$$

$$(0.5-0.3) = (0.7-0.3) (1-m)^x$$

$$0.2 = 0.4 (1-m)^x$$

$$(1-m)^x = 0.2 / 0.4 = \frac{1}{2}$$


$$x \log (1-m) = \log 0.5$$

$$\log (1-m) = \log 0.5 / x = -0.03$$

$$e^{\log (1-m)} = e^{-0.03}$$

$$1-m = 0.97 \implies m = 0.066 \implies 6\%$$

= 0.3

$$\mathbf{q} = \mathbf{m} \ \mathbf{q}_{\text{imig}} + (\mathbf{1} - \mathbf{m}) \ \mathbf{q}_{o}$$

$$= (0.05 \times 0.7) + (1 - 0.05) \times 0.3$$

$$= 0.32$$

0.32 =
$$m q_{imig} + (1-m) q_o$$

$$= 0.4m + (1-m) 0.3$$

$$= 0.4m + 0.3 - 0.3m$$

$$= 0.1m + 0.3$$

$$0.1m = 0.32 - 0.3 = 0.02$$

التمرين 25 :

انظر المعطيات العلمية